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Abstract—Modeling the information diffusion process is an
essential step towards understanding the mechanisms driving
the success of information. Existing methods either exploit
various features associated with cascades to study the underlying
factors governing information propagation, or leverage graph
representation techniques to model the diffusion process in an
end-to-end manner. Current solutions are only valid for a static
and fixed observation scenario and fail to handle increasing
observations due to the challenge of catastrophic forgetting
problems inherent in the machine learning approaches used
for modeling and predicting cascades. To remedy this issue,
we propose a novel dynamic information diffusion model CICP
(Continual Information Cascades Prediction). CICP employs
graph neural networks for modeling information diffusion and
continually adapts to increasing observations. It is capable of
capturing the correlations between successive observations while
preserving the important parameters regarding cascade evolution
and transition. Experiments conducted on real-world cascade
datasets demonstrate that our method not only improves the
prediction performance with accumulated data but also prevents
the model from forgetting previously trained tasks.

Index Terms—information cascades, continual learning, catas-
trophic forgetting, graph neural networks, popularity prediction

I. INTRODUCTION

Online social networks (OSN) such as Twitter, Weibo,
Reddit, Instagram and Facebook have become the main source
of information in people’s daily life. Various news, events, and
posts are disseminated as information cascades spread by users
through OSN [1], [2]. In academic community, researchers
publish their works in various venues which have been fully
digitized and provide unprecedented opportunities to share the
scientific results and discover the new ideas for researchers. As
a result, predicting the size of (potentially) affected users or
authors after a certain time-period has attracted great attention
in both academia and industry, which plays a critical role in
many down-stream applications — from fake news detection,
through epidemic spread identification and improved advertis-
ing effect, to suppressing rumor information propagation [3],
[4].

Existing approaches. While the trajectories of the information
items such as microblogs, photos/videos and academic papers
are usually structured as information cascades and have been
proved to be predictable to some extent [5], a variety of
methods have been proposed to analyze, model and predict the
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popularity of the information cascades. Existing approaches
for popularity prediction mainly fall into three categories, i.e.,
feature-based methods, stochastic process-based methods and
deep learning-based methods. Feature-based methods extract
the attributes from raw data by hand-crafted feature engineer-
ing [5], [6], where the user generated contents, user profiles,
structural and temporal features of cascades are widely em-
ployed to model the information diffusion process. Therefore,
typical machine learning methods such as naive Bayes, deci-
sion trees, neural networks and probabilistic graphical models
can be used to perform prediction tasks. Another line of work
studies the stochastic process of information diffusion and
generally captures the potential rules of the arrival of events
(e.g., the adoption by a user), and then predicts the popularity
based on the learned diffusion process. These works heavily
rely on the assumed stochastic model such as Poisson and
Hawkes point processes, whereas the designed self-exciting
mechanisms and intensity functions [7], [8] learned in one
domain are difficult to be generalized to another domain.
Recent advances in deep neural networks have inspired a
few of works learning the information diffusion with various
deep learning techniques [2], [9]-[11]. Generally, these meth-
ods learn the structural information regarding the evolving
process of cascades using graph representation learning tech-
niques and employ recurrent neural networks (RNNs) to model
the diffusion steps of cascade. For example, DeepCas [9] bor-
rows the idea of DeepWalk [12] to sample the cascade graphs
with random walks. The sampled node sequences are then
fed into GRU with attention mechanism to obtain the cascade
embeddings and predict cascade popularity in an end-to-end
manner. Chen et al. [2] propose to learn the cascade graphs
with directed graph convolutional networks (GCN) [13] and
employ LSTM with time decay effects to capture the temporal
information of diffusion. Recently, VaCas [11] extends the
deterministic cascade graph embedding with stochastic node
representation and diffusion uncertainty, which allows more
robust cascade prediction.
Challenges. Typically, current algorithms predict the popular-
ity of a specific information in the future, e.g., 24 hours after
posting a tweet or 20 years after the publication of a paper,
given a limited number of observations (e.g., 30 minutes for
tweets or 3 years for scientific papers). Fig. 1 illustrates a
toy example of information diffusion, where ¢,, and t,, are
observation times and ¢, denotes the prediction time. Previous
models usually learn the structural and temporal features of the
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Fig. 1. A toy example of information diffusion and popularity prediction.

cascade given a fixed time of earlier observations (e.g., t,, or
to,) and then predict its popularity at Z,,.

Despite promising results achieved by current models, ex-

isting solutions suffer from a well-known issue called catas-
trophic forgetting [14], i.e., the model’s performance may
rapidly decreas on previously learned tasks when trained on
a new task. Take the case in Fig. 1 for example, we may
have trained a model M; with the observations by the end
of time ¢,,. As the observation accumulates, M; is incapable
of adapting to the new observations between [¢,,,¢,,], which
means we need to manually train another new model Mo
starting from scratch. Though M, often performs better than M;
due to more observations are used, it may not “remember” the
parameters of My, resulting in significant performance decrease
of My on previous task without revisiting the observations
before t¢,,. In real-world applications, the knowledge of the
cascade diffusion continually evolves over time and the size of
the data often prohibits frequent batch updating and retrospect
of the observations in previous tasks, e.g., it is very common
that there are millions of retweets for popular articles in
a very few hours on Twitter or Weibo. Unfortunately, how
to increasingly improve the model performance with new
tasks (or incremental observations) while still retaining the
performance in previous tasks has not been studied in cascade
popularity prediction.
Present work. In this paper, we initiate the first attempt to ad-
dress the continual cascade learning problem. Specifically, we
present a novel model CICP (Continual Information Cascade
Prediction), which combines graph representation learning and
continual learning for dynamic cascade modeling while also
adapting to perform well on the entire set of prediction tasks in
an incremental way without revisiting the previous data at each
stage. In particular, CICP leverages a diffusion graph neural
network (GNN) for cascade graph structure modeling and
employs LSTM [15] to capture the temporal and sequential
diffusion patterns. Moreover, we estimate the distribution of
model parameters and the importance of each parameter using
Bayesian learning. The posterior of the parameters in previous
tasks is inferred with fisher information matrix, which then
plays as the prior of the subsequent task where the important
parameters (for previous tasks) are largely retained. The main
contributions of this work are three-fold:

o« We propose a new cascade learning paradigm that is
more suitable for practical information dissemination ap-

plications, and present the first continual cascade learning
framework which can gradually acquire knowledge from
streaming of structured diffusion data for incremental
popularity prediction.

o We present a novel GNN-based cascade model, which
not only captures the structural and temporal diffusion
patterns of information cascades, but also allows for
effective parameter importance estimation. Our method
can largely alleviates the inefficient learning problem
when modeling sequential graph representation learning
tasks using GNNGs.

e We conduct experiments to evaluate the effectiveness
of the proposed model on two real-world information
cascade datasets. The experimental results demonstrate
that CICP learns better diffusion-related knowledge from
cascade graphs and preserves the evolving patterns of
information, while circumventing catastrophic forgetting
issue in existing models.

II. RELATED WORK

Early efforts mainly focus on characterizing various hand-
crafted features from raw data, such as cascade graph struc-
tures, temporal features, user interests and item contents,
etc. The extracted features are then fed into typical machine
learning models for prediction. For example, Zhang et al. [16]
found user-related features are effective on predicting whether
a user would participates in a cascade, while Gao et al. [17]
identified structural features and temporal features as more
informative predictors for microblogs. However, feature-based
methods heavily rely on experts’ domain knowledge which
makes the learned features hard to be generalized into different
scenarios, e.g., a set of features extracted from tweets are
usually ineffective for citation cascades.

Stochastic process based approaches assume that the under-
lying diffusion mechanism is known as a prior and then model
the intensity function for information items’ arrival times.
For example, Lee et al. [18] predict the popularity of online
content by borrowing the ideas from survival analysis. Shen
et al. [19] proposed a generative probabilistic model to predict
the popularity of scientific papers using a reinforced Poisson
process, which models items’ popularity with reinforcement
mechanism, i.e., rich-get-richer. Cao et al. [20] transformed
cascade into a set of diffusion paths — each of which depicts
the process of information propagation for each participant
within an observation time — and then model the cascades with
self-exciting Hawkes point process. While providing enhanced
model interpretability, these methods are network-agnostic and
therefore fail to consider the implicit diffusion trajectories and
the dynamics regarding cascade graphs that govern the success
of popular information items.

Recently, the success of deep learning techniques has
spurred a number of neural networks based information cas-
cade models. DeepCas [9] is the first cascade graph repre-
sentation learning method which models the structural and
temporal information w.r.t. cascades using DeepWalk and
GRUs, respectively. CasCN [2] samples a series of sequential



sub-cascades and adopts a dynamic multi-directional GCN
to learn the structural information of cascades, the learned
representations are then fed into LSTM for prediction.

Despite the promising results achieved through deep graph
representation learning, existing cascade models are prone to
catastrophic forgetting, i.e., training a cascade model with new
data would interfere with previously learned knowledge [14].
This issue makes existing models difficult to adapt to evolved
cascade graph data and prone to abrupt performance decrease
on old tasks, unless storing all previously trained models.
Recently, continual learning, also referred to as lifelong learn-
ing or incremental learning, has received increasing attention
due to its ability of accommodating new knowledge and/or
adapting the learned knowledge to the continuous input [21],
[22]. Existing continual learning methods can be roughly cat-
egorized as three lines of works, i.e., experience replay based
methods, regularization-based methods and parameter isola-
tion based methods, cf. [21], [22] for comprehensive reviews.
Our CICP model is build on elastic weight consolidation [23]
which, therefore, can be considered as a regularization-based
continual cascade learning model. In this vein, this paper
provides the first continual information diffusion model that
could largely alleviate the forgetting issue through generalizing
the diffusion patterns progressively while still retaining the
knowledge of previous episodes.

III. PRELIMINARIES

In this section, we introduce the necessary background of
information cascade and formally define the continual cascade
learning problem.

Definition 1: Cascade Graph - Given an information
item C; and its corresponding cascade graph G;, which is
defined as an evolving sequence of N sub-graphs G; =
{Gi(t0),Gi(t1), - Qz(tN 1)}. Each sub- graph QZ( ;) is com-
posed by a 3-tuple (Vl ,Ef” ,t;), where V 7 and 5 7 are nodes
and edges in graph G;(t;) added at time ¢;.

Suppose node v;” is the user who participates in C; at time
t; and define V I = {oo .. v/}, we let the set of edges
5 i represents the retweeting (or 01t1ng) relationships between
nodes in V 7. Following previous works [2], [11], we defined
the predrctron problem as a regression task, i.e., we aim to
predict the numerical future popularity P; for cascade C; at
time ¢, by observing a partial cascade graph G; at time ¢,,.

Definition 2: Information Cascade Popularity Prediction
— Given an information C; and its partial cascade graph G,
the information popularity P; is defined as P; = V"] — [V!*|,
where ¢, and ¢, are the observation time and the prediction
time, respectively; and |V}| denotes the size of the cascade
graph, in terms of the number of nodes in C;. Thus, our main
objective is to learn a regression function f : C; — P; that
maps cascade C; to its incremental popularity P;.

Above problem definition is only applicable to learn a
single prediction task. In this work, we consider the following
continual cascade prediction problem.

Definition 3: Continual Cascades Prediction — Continual
cascades prediction considers a sequential of tasks. Suppose

we have three tasks: task A, B and C, our goal is to learn
a model f : C} — PLC? — P?,C7 — P, where
Cf(x € [1,T)) are different observations of C;, and P;* denote
the different predicted results made by the model. In another
words, the learned model f should retain its performance on

a sequence of 7 tasks.

IV. METHODOLOGY

We now present the methodology of CICP for addressing
continual cascade learning problem.

A. Modeling Cascade Diffusion with GNN

We model the structure of cascades with graph neural
networks, which has received considerable attention due to its
capability of transforming, propagating and aggregating node
features across the graph. Typical GNNs such as GCN [13]
and GAT [24] are only applicable to undirected graphs,
whereas information diffusion considered in this work requires
modeling the directed propagation of the information. To this
end, we use a directed GNN model suggested by [2] for
modeling the structured cascades.

More specifically, for an observed cascade graph G;(t,),
A is the weighted adjacency matrix, D is the diagonal degree
matrix, then the Laplacian can be therefore determined as L =
D — A =UAUT, where A = diag(\o, A\1,...,An_1) is the
diagonal matrix of eigenvalues. When modeling the directional
cascade graphs, we use the Laplacian of cascade A., ak.a.
CasLaplacian [2], for modeling the convolution operation over
a single cascade signal X as:

y—w*gX—fian(ZQX; (1

where A, = —A — I is defined as a scaled Laplacian,
Ty, is the Chebyshev polynomial, €, denotes a vector of
Chebyshev coefficients and \,,,, is the largest eigenvalue of
Laplacian.

After obtaining the adjacency representation of sub-cascade
graph sequence and corresponding Laplacian matrix A., we
can learn the structural and temporal patterns of the cascade
G; using any RNN models. Here, we employ an LSTM [15] to
model the sequential cascades and use a multi-layer perceptron
(MLP) to compute the incremental cascade popularity. Thus,
the loss function for training a single cascade popularity task
is defined as:

1 M
=M2m21%), )

where M is the total number of cascades in training set, P;
and P; are the ground-truth and the predicted future popularity
of the cascade, respectively.

Remarks. Note that the above process of cascade learning is
similar to our previous work CasCN [2], which is not the main
contribution of this work. For completeness, we use CasCN as
our building block for cascade modeling. However, the main
architecture of CICP is model-agnostic, which means one can



easily replace CasCN with other cascade learning models, e.g.,
DeepCas [9], DeepHawkes [20], etc.

B. Continual Cascade Learning

Above we have presented a GNN-based model for single
cascade prediction task. However, as we will show in next
section, CasCN, as well as other approaches, would suffer
severe model forgetting issue. Suppose that we have two
sequential cascade prediction tasks A and B, which are trained
on a streaming observed cascades, i.e., the observation time
for task B is later than that of task A. During training on A,
the model (M4) parameters are optimized towards the minima
of the loss using the observed cascade A. After observing new
evolution of the cascade, the model Mp can be trained using
the same method, but it would not adapt to the data for training
task A anymore.

To overcome this issue, we present an adaptive training
method based on elastic parameter consolidation [23] to pre-
serve the important parameters for model M4 when training
model Mp. Intuitively, the contribution of each parameters is
different for various tasks. If the parameters that are important
for task A are changed greatly when training on task B, the
performance of the new-trained model Mp would perform
poorly on previous task A. Nevertheless, if we know the
importance of parameters for task A and decrease the speed of
change of the important parameters for task A, the catastrophic
forgetting issue will be significantly alleviated.

Without loss of generality, the model parameters 6 are
optimized to be their most probable values given the cascade
graph G. The conditional probability p(#|G) can be described
by Bayes’ rule:

log p(0|G) = log p(G|0) + log p(0) — logp(G),  (3)

where G = G4 + Gp denotes the entire dataset. When
training the subsequent task B after task A, the conditional
probability of parameters p(6|G) can be described as:

log p(0|G) = log p(Gp|0) 4 log p(0|G a) — logp(G ), (4)

where log p(Gpg|6) represents the loss on task B. In order
to consider the influence of task A, the important parameters
0% for task A should be reflected in the posterior distribution
log p(0|G 4), which can be approximated by Gaussian distri-
bution with averaged parameters 6% as mean and a diagonal
precision estimated by fisher information matrix (FIM) Fs4
[23], [25]. Following [23], we approximate FIM F'4 using the
empirical FIM to avoid additional backward pass. Hence, the
importance weight Fy ; of task A is defined as the squared
gradient of loss £ 4 for a parameter 6;:

L4 \>
904

Note that F'4 ; is only calculated after training task A. In-
tuitively, parameters with higher value of F4 ; have a large
curvature in the parameter space. That is, such parameters
are important for task A, which, therefore, should be strongly
regularized for the next task learning.

Fa,=E &)

TABLE I
STATISTICS OF TWO DATASETS

Dataset | Weibo | APS

Task | A B C | A B C
Time ‘ 1 hour 2 hours 3 hours ‘ 5 years 7 years 9 years
casca- train 2,649 3,198 3,500 2,394 3,052 3,500
de; val 567 685 750 513 654 750
) test 567 685 750 513 654 750
Av train 58.39 68.08 73.78 17.52 19.44 20.59
nois val 60.86 72.82 69.18 17.81 19.63 22.01
test 60.69 64.26 74.21 18.75 19.30 20.52
A train 223 2.28 2.30 3.08 3.27 3.41
:tis val 2.23 2.27 2.29 3.09 3.29 3.47
p test 2.26 2.30 2.30 3.12 3.29 3.47
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Fig. 2. Cumulative Distribution Function (CDF) of cascade popularity.

After training on task A, we can compute the importance
of each parameter for task A and specifically constraint the
parameters with larger importance weight. While training on
task B, the parameters will be updated towards the low place
for task B, except for the parameters that have been given
strong constraint — which should be changed slightly so that
the model performance on task A is still maintained, so that the
catastrophic forgetting will slow down, and the loss function
for task B is defined as:

Mp
~ >\A
B B\2 (0. * )2
L= i E (log PP —log P;°)° + EZ 5 Fai(0;—0%;)

i=1
(6)

where A is a hyper-parameter used to reconcile the importance
of previous tasks, Mp is the number of cascades in task B.

After training task B, this continual cascade learning would
be proceeded on the subsequent tasks. In this way, the data and
parameters for training previous models would not be accessed
by later tasks, i.e., our model can significantly save the storage
and memory cost that would be very expensive for mining the
knowledge from intensive streaming data.

V. EXPERIMENTS

We now evaluate the proposed CICP model against several
state-of-the-art baselines which achieve outstanding perfor-
mance on single task of cascade prediction.

Datasets. We conduct the experiments on two widely used
benchmark cascade datasets — Weibo [20] and APS [19] —



TABLE II
PERFORMANCE COMPARISON BETWEEN CICP AND BASELINES ON CONTINUAL CASCADE LEARNING.

Dataset | Weibo | APS

Task | A A—B A—B—C | A A—B A—B—C
Metric | AMSLE ~AMSLE (APF) AMSLE (APF) | AMSLE ~AMSLE (APF) AMSLE (APF)
Feature-based | 2441  3.970 (1.240)  4.670 (1.352) 1639 2671 (1.160)  3.380 (1.506)
DeepHawkes 2.236 3.615 (1.093) 4.551 (1.450) 1.523 2.631 (1.489) 3.739 (2.300)
CasCN 1.950 3.366 (1.363) 4.104 (1.785) 1.403 2.098 (1.026) 3.270 (2.083)
CICP ‘ 1.913 2.621 (0.600) 3.012 (0.640) ‘ 1.375 2.090 (1.000) 2.902 (1.695)

for evaluating cascade popularity prediction models. Weibo
is a Twitter-like social networking platform in China. The
cascades in Weibo dataset are formed by tweets and their
retweets. APS dataset contains scientific papers published by
17 American Physical Society journals. The cascades in APS
dataset are formed by papers and their citation papers. For
each dataset, we select 70% samples as the training set, and
the remaining as validation set (15%) and test set (15%). The
cumulative distribution function (CDF) of cascade popularity
on two datasets are shown in Fig. 2.

To verify the effectiveness of continual cascade learning,
we construct three tasks for each dataset, each of which are
built by setting different observation times. In our experiments,
we set three observation times in Weibo: 1 hour, 2 hours and
3 hours, obtaining three tasks (A, B and C) which represent
three cascades of information diffusion. Similarly, we set three
observation times in APS: 5 years, 7 years and 9 years. The
details of the datasets are shown in Table I.

Baselines. To demonstrate the effectiveness of our proposed
framework, we compare CICP with the following three differ-
ent representative models. eFeature-based: Feature-based ap-
proaches extract many hand-crafted features from information
items, such as the texts and images of tweets/papers, structural
and temporal features of cascades, etc. Here we use following
features: time between original and its first forwarding, time
interval of each retweet, average and max path length of
sequences, and the average time of the diffusion from the first
node to the last node. We then feed these features into a two-
layers MLP model for cascade training and prediction.
eDeepHawkes [20]: combines the advantages of stochastic
processes and deep learning techniques for modeling cascades,
which considers three factors from the view of Hawkes point
process, i.e., user influences, self-exciting mechanism, and
non-parametric time decay effects, and learns these parameters
in a deep learning way.

eCasCN [2]: samples an information cascade graph as a
sequence of sub-cascade graphs and jointly models both the
directions of diffusion and the time of retweeting with graph
convolutions and LSTM.

Evaluation metric. For a single task of information popularity
prediction, we usually use the mean square logarithmic error
(MSLE) to evaluate the model performance (cf. Eq. (2)).
However, it is not suitable for evaluating continual cascades
learning problem. Inspired by average accuracy and forgetting

measure [26] for classification tasks, we define two metrics
taking into account both the averaged task prediction perfor-
mance and the forgetting degree on multiple tasks. We let my, ;
denote the MSLE of the k-th task after incrementally training
the model from tasks 1 to task j. The average AMSLE (MSLE)
is defined as:

1 J
AMSLE = = “my;, (7)
J =
where j is the number of previously trained tasks. The aver-
age percentage forgetting (APF) measure depicts the relative
extent of model forgetting, which is defined as:

j—1 .
(myg,; — minmy )
APF = ! ! 8

kz_: min mg ’ ®

where [ € [1, j]. Apparently, the lower the value of APF, the
better performance the model achieved on continual cascade
learning.

A. Experimental Observations

Performance comparison. Table II reports the overall per-
formance evaluations of all methods on two datasets. We can
clearly observe that our proposed CICP model achieves the
smallest prediction error AMSLE on both datasets. Apart from
the overall superiority of our model, we also have following
findings.

Previous cascade modeling methods, both feature-based and
deep learning-based, suffer from catastrophic forgetting issue.
As the number of tasks increases, their average model perfor-
mance significantly degrades due to the lack of mechanism
for preserving the important model parameters on previous
tasks. In contrast, CICP is capable of alleviating the forgetting
issues and incrementally adapts the model performance on new
coming observations.

Further, our model performs better on Weibo dataset than on
APS dataset, which means the microblog platforms are more
prone to model forgetting problem. This is because the more
intensive observations received on Weibo cascades — e.g., the
number of average nodes participated in the Weibo cascades
is significantly higher than in the APS cascades. This result
suggests that the continual cascade learning model proposed
in this paper is, arguably, more suitable to data intensive
scenarios.
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Fig. 3. Convergence of models

Model convergence. To better interpret the effectiveness of
the proposed model, we plot the training process of CICP
and baselines on three tasks, shown in Fig. 3. Clearly, the
loss of CICP consistently decreases and converges to a lower
value on all three tasks and are remarkably more robust to new
tasks, i.e., CICP achieves slightly and “smooth” increase when
confronting new tasks. This means our model successfully
retains the prediction performance on previous methods while
maintaining the performance on new coming observations.
Nevertheless, all baseline models typically perform worse on
previous tasks compared to CICP due to the problem of
parameter forgetting, though they achieve comparable per-
formance on the new tasks (e.g., task C) as CICP. Among
the baselines, the performance of feature-based method is
relatively stable which means the deep learning models are
more vulnerable to model parameter forgetting. This result
explains the behavior of our model and indicates that CICP can
well adapt to continuous incoming participants. In this spirit,
it gives intuitive explanations of the motivation of this work,
i.e., we should pay more attention to continual information
cascade modeling and predicting rather than simply improving
the performance of single cascade task learning.

VI. CONCLUSIONS AND FUTURE WORKS

In this work, we formulated a novel learning problem con-
tinual cascade learning which requires incremental adaptation
to new tasks without significant performance degradation on
old tasks. We present a novel model CICP for addressing
this problem which is capable of estimating and preserving
important parameters in learned tasks and adapting to new
tasks without sacrificing too much performance on previous
ones. We evaluate the proposed model on real-world cascades
and the results proves the effectiveness of our model compared
to the baseline approaches. We hope this work can be used as
a stepping-stone for inspiring more insightful future works on
continual cascade learning.
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