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Abstract—Predicting the potential user interest on topics in
online social networks is important for many practical applica-
tions such as advertising, recommendation and malicious account
identification. Previous methods on such topic prediction problem
mainly focus on learning user preference from historical posting
content, and/or rely on the interest of friends to infer the topics
a user may be interested in. However, these methods fail to
take full advantage of high-order interactions between users
and topics and the implicit relations among users, which may
result in limited performance. In addition, existing approaches
usually require a large amount of samples to train the model and
therefore have poor prediction performance for the users who
have few content and/or rarely follow the topics. To overcome
these limitations, we present a novel method MetaTP (Meta
learning based Topic Prediction) for exploiting the complex
preference of users over the topics and identify the potential
topics for cold-start users. MetaTP is built on a fast graph
convolutional network to estimate the user interest through
extracting user posting behavior from historical posting content
and recursively aggregating the interest from the social friends
of a user. Moreover, MetaTP introduces a new way of training
prediction model in a meta-learning manner, which not only
improves the performance on topic prediction but also can
effectively and efficiently adapt to users with a few records. We
validate our MetaTP model on real-world datasets crawled from
popular social platforms and the empirical results show that our
approach significantly outperforms the state-of-the-art baselines.

Index Terms—topic participation, graph neural networks,
meta-learning, few-shot learning, social networks.

I. INTRODUCTION

Nowadays, we are inevitably involved in various online
social medias (OSM) such as Twitter, Facebook, Weibo, and
Instagram in our daily life. The popular social networks usu-
ally have billions of active users, who are sharing experiences,
updating photos, commenting on news articles, and are also
participating in various discussions or following topics of
interest, etc. As for the social platforms, the more users
engaging in various topics, the more visibility and business
profits they can benefit from advertisements, recommenda-
tions, commodity selling and even public health concerns.
When we open Twitter or Weibo, the most popular topics (also
called hashtags) are usually shown in the obvious positions
in the APPs, which could attract more and more people to
read, share and comment on those topics. Therefore, predicting
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which topics users may be interested in has emerged as an
important problem in both industry and academia [1]–[3].

Previous efforts on topic prediction/recommendation mainly
focus on mining users’ posting behaviors and publication
contents. For example, earlier works [4]–[6] studied different
types of relationships among users and topics through min-
ing user-generated content (UGC) and opinions, and make
personalized topic or article recommendations. Tan et al. [7]
investigated users’ textual reviews and ratings to model users’
topics of interest and used the matrix factorization for topic
recommendation. Huang et al. [2] try to capture the preference
propensity between a user and a few topics, while Liang et
al. [8] propose a topic clustering model to track the users’
time-varying topic of interests. These methods mainly focus
on discovering users’ preferences based on UGC (e.g., texts,
photos, ratings), which, however, limits their performance for
the users with few historical records.

To recommend topics to cold-start users, collaborative fil-
tering (CF), as a well-established technique, is a promising
method for addressing the cold start problem. A variety of
works [9]–[12] extracted metadata and contextual information
from OSM users for tweet recommendation, while topic mod-
els (e.g., Latent Dirichlet Allocation) and ranking algorithms
(e.g., Bayesian Personalized Ranking) have been widely used
for improving the CF-based recommendation performance.
Despite achieving promising results on topic recommendation
and, to some extent, alleviate the cold-start problem by CF-
based correlation learning, these works fail to model the social
interactions among users which contain rich information that
could affect user behaviors, e.g., people are usually influenced
by crowds, especially friends and celebrities, a.k.a. herding
behavior in psychology.

Since people are more likely to follow popular and/or
emerging topics being extensively discussed in their social
circles, leveraging these information, combined with their
historical behaviors, would be potentially helpful in learning
users’ preference and predicting topic participation. Inspired
by recent advances in applying deep learning techniques to
graph-structured data, we present a graph neural network
(GNN) based framework for learning users’ preferences. We
propose to model the high-order connectivity between users
through designing a fast graph convolutional network method
to propagate user’s preference recursively in social networks.

Instead of relying on a single GNN model that would be



problematic for cold-start users, we present the Meta-learning
based Topic Prediction (MetaTP) model to quickly adapt
to users with few generated content. MetaTP enables us to
estimate users’ preferences directly based on an individual
user’s generated content and her/his social interactions, even
when only a small amount of data are available for that user. In
contrast to CF-based method that relying on similarity between
user posting behaviors, the proposed model generalizes UGC
and social relations in a unified framework. More importantly,
MetaTP is capable of stacking a number of mini-tasks for
enhancing the topic prediction performance while substantially
improving the user preference learning in an ensemble learning
manner. In particular, we make the following contributions:
• We highlight the critical importance of explicitly exploiting

both user-generated contents and social interactions for topic
participation prediction and propose a fast graph convolu-
tional network for capturing implicit interactions between
users and topics and learning high-order user preference.

• We propose a meta-learning based framework for learning
a robust topic participation prediction model. Our model
learns prior knowledge from users with rich content and
can quickly adapt to users with only limited historical data.
To our knowledge, MetaTP is the first attempt for learning
user preference by seamlessly integrating graph learning and
meta-learning.

• We conduct extensive experiments on the real-world datasets
of four popular online social networks including Twitter,
Weibo, Zhihu and Douban. The results demonstrate that our
MetaTP model significantly outperforms the state-of-the-art
methods on all datasets.

II. RELATED WORK

Understanding users’ topics of interest is an important step
for many practical applications, ranging from recommendation
and advertising, through trending topic and public health
concern prediction, to rumor and fake news identification.
Many research works have been conducted to discover users’
preferences. Most of them [2], [4]–[8] study the UGCs, such as
microblogs, articles, photos and videos to uncover user prefer-
ence over various topics. Typical machine learning techniques
such as topic models, classification and clustering methods
can be used to predict the topics a user may be interested
in. However, these methods pay much attention to historical
user contents yet fail to model the interactions between users,
which are indicative signals of user future behavior.

Recent advances in deep learning have spurred a variety of
graph deep learning methods [13]–[15], which mainly focus
on learning representations of graph structures that can be
used for many downstream tasks such as node classification
and link prediction. Recently, graph neural networks have
gained increasing research interests as a means for robust
and universal graph representation learning. Generally, GNN
models follow a predefined neighborhood aggregation strat-
egy, where the representation of a particular node is learned
by recursively aggregating and transforming representations
from its neighboring nodes. Various GNN models, such as

GCN [15], GAT [16], GIN [17], GraphSAGE [18], etc., have
been proposed which vary from each other in the node ag-
gregation mechanisms. As an important application of GNNs,
node classification is to identify the labels of nodes, which,
however, is slightly different from the topic prediction problem
studied in this work. The latter is a multi-label classification
problem that cannot be addressed by existing GNN models that
mainly focus on multi-class node classification, i.e., each node
only belongs to one of the classes. In addition, current GNN
models can neither accurately classifying nodes with few data,
nor effectively adapt to unseen topics with few participants.

Meta-learning (a.k.a. learning to learn) [19], has drawn a
significant attention in recent years, due to its capability of
quickly adapting to new tasks and leveraging prior knowledge
for learning a new concept. The paradigm of meta-learning
has been admitted as the most similar way of approximating
human intelligence – since humans are naturally able to learn
new concepts with learned prior knowledge. Meta-learning
methods are usually trained with many mini-tasks and tested
on their ability to learn new concepts, which is different from
mainstream machine learning techniques. In this work, we
borrow the idea of MAML [20] for training our MetaTP, which
learns a parameter update scheme that a topic prediction model
can take to successfully adapt to the new topics. However,
instead of directly applying MAML, we show that slightly
modifying the training objective of MAML, we can learn user
preference in a traditional supervised learning manner rather
than only adapting to new tasks as in MAML. In this vein,
we present a new paradigm combining the graph structural
learning ability of GNN and the ensemble learning nature of
meta-learning for training an enhanced topic prediction model.

III. PRELIMINARIES

In this section, we formally define the problem and describe
the basic features used to learn users’ latent topic preferences:
(i) content feature – posting history (e.g., user historical
tweets); (ii) network feature – the social network structures
(e.g., following relationship), as necessary backgrounds of the
topic participation prediction problem.

A. Problem Definition

Our goal is to predict the topics that a particular user
would join in the future. Since a user may be interested in
more than one topic, we formulate the topic participation (TP)
prediction task as a multi-label classification (MLC) problem.
Specifically, let V = {v1, · · · , vn} denote n users and given
a topic space Y with m topics: Y = {y1, · · · , ym}, i.e., Y
is the vocabulary of all topics discussed by users in V . The
TP task is to identify a list of possible topics y ∈ Y for
each user v ∈ V by training a classification model fθ(·).
Thereby, the problem can be calculated as finding an optimal
topic sequence that maximizes the conditional probability:
p(y|v) =

∏l
ι=1 p (yι|y1, · · · , yι−1, v), where l is the number

of topics that user v participates in.
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Fig. 1. The framework of MetaTP. It utilizes the content feature and network feature for user preference learning.

B. Features

We consider two feature types: content and network feature.
Content feature: for each user v, we aggregate all posting
history (posting content and user’s topic participation history)
to form a document and embed the entire document into a
vector representation. Here we use doc2vec [21] to obtain
a numerical representation that captures the context of the
document, denoted as the user content feature matrix X.
Network feature: according to previous studies [3], [22],
users’ behavior is more likely to be influenced by their friends
or the crowds on OSM, e.g., users might be interested in topics
that most of their friends participate in. We define a graph
G = (V,E,N (v)) with a symmetric adjacency matrix E ∈
Rn×n and a diagonal degree matrix D = diag(d1, . . . , dn):
(i) V (|V| = n) is a set of user nodes, and each edge
ei,j = (vi, vj) ∈ E represents an interaction between vi and
vj ; (ii) N (v) denotes the set of v’s neighbors (friends) that
connect to v within h-hops (here h = 3); (iii) each entry on
the diagonal matrix is equal to the row-sum of the adjacency
matrix. Thereby, each node v in the graph has a corresponding
d-dimensional vector (di =

∑
j eij).

IV. METHODOLOGY

In this section, we describe the details of our proposed meta-
learning based topic participation model (MetaTP). Fig. 1
shows the meta-training process of the proposed model, con-
sisting of the task training and parameter updating procedure.
In the next, we first present a fast graph convolutional neural
networks (GCN) architecture for user interest learning, and
then introduce the task (episode) sampling method, which
is the basic background of meta-training. Next, we explain
how to train the meta-learning tasks to obtain the optimal
parameters for improving the prediction performance and
adapting to users with few training data.

A. Learning Aggregated User Preference with GCN

To learn the user preference over topics, we take into ac-
count both their historical posting content and social relations.
Towards this goal, we present a graph convolutional networks
(GCN) [15] based network to learn the representation of user
nodes by smoothing and aggregating their content features.

It also plays the role of generating a topic list for each user
(i.e., predicting the labels). However, directly applying GCN in
MetaTP is problematic, because original GCN model requires
the nonlinear activation in each aggregation layer, which is
computation intensive for our model since we need to train a
large number of tasks (will be discussed later). To speed up
the training of MetaTP, we introduce a lightweight GCN as
the basic network architecture in our MetaTP inspired by [23].

Specifically, we simplify GCN by removing the nonlineari-
ties and alternatively smoothing the hidden feature aggregation
with linear transformations. The graph convolution is therefore
iteratively computed as:

H(τ+1) = D− 1
2 (A+ I)D− 1

2H(τ), (1)

where H(τ) denotes the feature representation in the τ -th
layer (τ ∈ [0, t]), I is an identity matrix added to A to
include self-loops, D is the degree matrix of Ã = A + I,
and S = D− 1

2 ÃD− 1
2 denotes the normalized adjacency

matrix with self-connections. In the sequel, the final preference
representation of users obtained in the last layer (t-th layer)
is used for downstream prediction task, expressed as:
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After getting the final graph representation, we use MLP to
output the predicted labels:

ỹ = W2 ReLU(W1H(t)), (3)

where W1 and W2 are parameters of MLP which map the
feature representation H(t) to the potential interested topics ỹ
for each user. Here we use ReLU as the nonlinear activation.

B. Task Sampling

The goal of the meta-learning approaches is to learn a model
that can quickly adapt to new tasks with a few data samples
by extracting task-general prior knowledge from a number
of few-shot sample tasks. Previous meta-learning models for
image and text classification follow a episode (task) training



paradigm, where tasks T are typically characterized as C-
way/class K-shot learning, i.e., there are C classes in each
task and K training samples in each class.

Formally, we split the training set Dtrain to sample a set
of tasks T = {T1, T2, . . . , TM} from the task distribution
T ∼ P(T ). Meta-learner can learn the common structure in
this task distribution, which can be exploited for faster learning
with a small number of data available. Each task Ti ∈ T
is formed by randomly sampling C-topics and K labeled
users per class as the support set Si = {(vi,j , yi,j)}C×K

j=1

and P unknown samples from the rest users as the query
set Qi = {(vi,k, yi,k)}C×P

k=1 . The task loss is computed by
the error between the model’s output ỹj and corresponding
ground-truth labels yj . Since TP task is an MLC problem, we
use the cross-entropy loss to calculate the task loss.

During meta-training, we extract M tasks from P(T ) and
feed the corresponding data to the GCN model.

C. Meta Training

The meta-learning algorithm aims to train an effective
model that can rapidly adapt to tasks that have not been
used during training with few examples [20], [24], [25].
The optimization-based meta-learning algorithm considers the
meta-learner fθ(·) to learn a good parameters initialization for
fast adaptation [25]. In our setting, one may directly utilize
meta-learning methods such as MAML [20] for updating the
parameters, which provides a gradient-based procedure with
only a single additional parameter (the meta-learning rate) and
operates on the same parameter space for both meta-learning
and fast adaptation. Nevertheless, MAML is a traditional meta-
learning method that originally designed for better adapting to
the classes that are unseen during meta-training. In contrast,
topic prediction requires predicting the topics that a user may
participate in, which is a typical multi-label classification
problem. In MetaTP, we present a simple yet effective method
to modify the MAML for explicitly learning to learn from the
given support set Si to minimize a loss over the query set Qi,
which consists of an inner update and outer update process
while making the topics in meta-training and testing the same.

1) Inner updates: Formally, we train the MetaTP by op-
timizing the initial parameters θ such that after a few-steps
ϵ = [0, 1, . . . , ξ] of gradient descent on Si, MetaTP can obtain
the task-specific parameters ϕi with acceptable performance
on Qi. We refer to the inner gradient descent procedure that
computes ϕi (ϕ0

i = θ) as fast adaptation. Since ϕi is an
iteration of a gradient descent procedure that starts from θ,
each ϕi is of the same dimension as θ:

ϕϵ
i = ϕϵ−1

i − α
∂L(Si;ϕ

ϵ−1
i )

∂ϕϵ−1
i

, (4)

where α is the task-learning rate specified as a hyperparameter.
2) Outer updates: The ultimate goal of MetaTP is to

optimize the model parameters θ such that a small number of
gradient steps on a new task will produce maximally effective
topic prediction performance on that task during training. After

each inner update, the model parameters θ in overall meta-
objective L(Qi;ϕ

l
i) are updated using gradient descent:

L(Qi;ϕ
ϵ
i) = argmin− log p(Qi|ϕϵ−1

i − α∇ϕl−1
i

L(Si;ϕ
ϵ−1
i )︸ ︷︷ ︸

ϕϵ
i

)

= L(Qi;ϕ
ϵ−1
i − α∇ϕϵ−1

i
L(Si;ϕ

ϵ−1
i )), (5)

where L(·) denotes the task-dependent cross-entropy loss.
The meta-learner is optimized by backpropagating the errors
through the task-specific parameters to their common initial-
ization parameters θ. The task loss is defined as:

L(Ti; θ) =
M∑
i=1

L(Qi;ϕi). (6)

Above meta-training method works by minimizing the query
set loss computed by base-network after it has completed all
inner-updates on a support set per task. Following [26], at
every gradient step, the meta-learner’s weights were optimized
implicitly as a result of backpropagation, which caused many
of the instability issues MAML had. To this end, we utilize
multi-step loss optimization to improve gradient propagation.
Specifically, we use the weighted sum of query set loss after
updating every support set loss as the task loss. That is, in a
mini-batch B, the gradient-based updating rule is:

θ⋆ = θ − β
∂
∑B

i=1

∑ξ
ϵ=1 ωϵL(Qi;ϕ

ϵ
i)

∂θ
, (7)

where β is the meta-learning rate and the loss weight ωϵ

is the query set loss at ϵ-th step used for improving the
gradient stability of meta training. The pseudo-codes for
training MetaTP is outlined in Algorithm 1.

Finally, the topic prediction is to produce a list of topics
ranking by the output of possibilities output by the MetaTP
model, i.e., ỹ = fθ⋆(vtest), where vtest denotes the testing users.

V. EXPERIMENTS

In this section, we evaluate our model MetaTP against
several strong baselines on four real-world datasets.

A. Experimental Setup

Datasets. We prepared four datasets crawled from four major
social media platforms, including two microblog platforms
Twitter and Weibo, a Q&A platform Zhihu (the largest
online Q&A website in China akin to Quora) and a web
2.0 websites Douban (provides social networking service for
users to share content on topics of movies, books, music, etc.).
For all datasets, we preprocess the data as follows: (i) we
remove the English stop-words and special characters; (ii) we
ignore isolated users in the social network. For each dataset,
we build the training and test sets according to the topic
participation time. Note that the users in each dataset are
ensured to be fully connected after preprocessing. The datasets
after preprocessing are summarized in Table II.
Experimental settings. For training our MetaTP, we use
Adam optimizer for optimization. Although it is common to



Algorithm 1: Meta Training Algorithm.

Input: training tasks T train = (S train,Qtrain); task-based
learning rate α, meta-learning rate β, the number of
inner loop updates ξ.

Output: optimal model parameters θ⋆.

1 Initialize θ randomly;
2 while not converge do
3 Sample a batch of tasks Ti ∈ T train, i = [1, B];

/* Outer updates */
4 foreach Ti do
5 Ti = Si ∪Qi, ϕ0

i = θ, L(Ti) = 0;
/* Inner updates */

6 for ϵ = 1, · · · , ξ do
7 Compute L(Si;ϕ

(ϵ−1)
i ) and evaluate

∇
ϕ
(ϵ−1)
i

L(Si;ϕ
(ϵ−1)
i ) using Si;

8 Compute adapted parameters ϕϵ
i with gradient

descent: ϕ(ϵ−1)
i − α∇

ϕ
(ϵ−1)
i

L(Si;ϕ
(ϵ−1)
i );

9 Evaluate weighted loss ωlL(Qi;ϕ
ϵ
i) on query

set Qi;
10 end
11 L(Ti) =

∑ξ
ϵ=1 ωϵL(Qi;ϕ

ϵ
i);

12 end
13 Calculate task loss:

∑B
i=1

∑ξ
ϵ=1 ωϵL(Qi;ϕ

ϵ
i);

14 Update θ by: θ⋆ = θ − β∇θ

∑B
i=1

∑ξ
ϵ=1 ωϵL(Qi;ϕ

ϵ
i ; ).

15 end

use threshold calibration algorithms for multi-label classifica-
tion, we use the constant 0.5 as the prediction threshold to
reduce the impact of external factors. At the meta-level, the
values of parameters C-way K-shot are set to 5-way 5-shot
for each meta-training task if not otherwise specified. And the
batch size of MetaTP is set to 32. We set the task-learning rate
α and meta-learning rate β to be 5e-5 and 5e-4, respectively.
Baselines. We compare MetaTP to following baseline models:
(1) node2vec [14] performs the 2nd-order random walks to
explore neighborhood architecture and embed nodes with the
Skip-Gram model, which is used for user social representation
learning in our experiments; (2) and (3) GCN-F/I [15]: GCN
is a semi-supervised classification method based on graph
convolution. Following [3], we derive two topic prediction
methods called GCN-F and GCN-I, respectively using posting
embeddings and identity matrix as the input feature matrix
in GCN; (4) Text-associated Deep Walk (TADW) [27]
incorporates text features of vertices into network represen-
tation learning under the framework of matrix factorization;
(5) CANE [28] learns context-aware embeddings for users
and models the semantic relationships between users; (6)
LRCNN [29] presents a CNN architecture for reranking pairs
of short texts, and learns the optimal representation of text
pairs and a similarity function to relate them in a supervised
way; (7) MACNN [2] is a CNN-based method for topic
prediction, which models user’s posting history and topics with
external neural memory architecture and attention mechanism.
Evaluation Metrics. Following standard metrics of the multi-
label classification in topic participation prediction [2], [3],
[29], we adopt Accuracy (ACC), Macro-Precision (Macro-P)

and Macro-F1 to evaluate the performance of models.

B. Overall Performance

The results of different models are reported in Table I,
where the best results are highlighted in bold. According to
this table, MetaTP performs the best in all cases, e.g., the
relative improvement over the best baseline range from 6%
to 22% in terms of Macro-P across four datasets, showing
that our model is more effective on learning user preference.
In addition to overall topic prediction performance, we have
following observations.

First, previous network representation learning models are
effective for topic participation prediction, even without con-
sidering user-generated contents, which can be proved by the
fact that node2vec sometimes performs best among the base-
lines. This interesting finding suggests that user content and
social relations are not consistent for discovering users’ real
preferences, e.g., users’ preference on topics (e.g., on Zhihu
and Twitter) may change significantly with time, which
means their historical contents are not necessary and are even
controversial to their future participated topics. This argument
can be further proved by the results that two text mining
based models LRCNN and MACNN are not comparable, even
compared with simply network embedding techniques. These
observations necessitate rethinking our traditional ways of user
preference learning in such a period that the user’s favor
changes rapidly, and also proposes an interesting question, i.e.,
how to capture the changes of user preference.

Second, simply relying on attributed graph learning (e.g.,
TADW, CANE, and GCN) may results in worse prediction
performance. Surprisingly, we found GCN is not sensitive
to user-generated content (e.g., the performances of GCN-I
and GCN-F are very close), which verifies the motivation of
this work, i.e., there are implicit interactions between user
and topics, which can not be captured by a single graph
convolutional network. In contrast, our method adapts to the
users with few samples by learning prior knowledge of user
preference from a (large) number of tasks and is therefore
more robust to perturbations of user preference changes.

Finally, the prediction performances of various models, vary
differently on different platforms. On Weibo dataset, the
prediction task is relatively easy since there are fewer topics
for each user. However, all models perform poorly on Zhihu
and Twitter, due to more topics users may participate in.
Surprisingly, models achieve better prediction results although
there are significantly more topics on Douban. The rationale
behind this phenomenon is that Douban is a website for users
to share personal topics of interest which is relatively stable,
compared to the trending topics in Zhihu and Twitter.
Though there are more topics in Douban, the users are closely
clustered by the topics (or groups) which makes the prediction
simpler than predicting the rapidly changed trending topics.

C. Parameter Sensitivity.

We conduct a sensitivity analysis to investigate the influence
of two important parameters of MetaTP. Due to the lack of



TABLE I
PERFORMANCES COMPARISONS ON FOUR DATASETS.

Method Weibo Zhihu Twitter Douban
Macro-P Macro-F1 ACC Macro-P Macro-F1 ACC Macro-P Macro-F1 ACC Macro-P Macro-F1 ACC

node2vec 0.4238 0.3803 0.3480 0.1062 0.0597 0.0387 0.2690 0.1297 0.0793 0.4478 0.3418 0.2336
GCN-I 0.1750 0.2196 0.1534 0.0711 0.1137 0.0631 0.1538 0.2127 0.1239 0.3811 0.3694 0.2405
GCN-F 0.2000 0.2725 0.1812 0.0707 0.1155 0.0637 0.1544 0.2229 0.1306 0.3848 0.3727 0.2450
TADW 0.4739 0.4208 0.3870 0.0176 0.0070 0.0047 0.2394 0.1270 0.0805 0.4530 0.1582 0.0959
CANE 0.2832 0.2529 0.2299 0.0399 0.0204 0.0138 0.2125 0.0981 0.0586 0.4454 0.3390 0.2449

LRCNN 0.3550 0.3200 0.2923 0.1061 0.0700 0.0441 0.1994 0.1520 0.0952 0.4472 0.3269 0.2261
MACNN 0.5640 0.5016 0.4645 0.0767 0.0245 0.0155 0.2670 0.1129 0.0724 0.4451 0.3782 0.2768
MetaTP 0.6813 0.6401 0.5811 0.1261 0.1163 0.0726 0.3272 0.2616 0.1731 0.4790 0.4118 0.3045

TABLE II
BASIC STATISTICS OF WEIBO , ZHIHU , TWITTER , DOUBAN .

Weibo Zhihu Twitter Douban
#Topics 12 89 55 154
#AvgTopicsa 1.5 6.1 8.5 56.7
#Users 6,732 2,368 2,673 2,241
#Tweets 84,168 754,015 828,254 1,362,789
#Friends 96,496 374,925 106,244 145,962
#Tasks 10,195 3,552 4,000 3,300

Training data 2013.01.14- 2015.06.01- 2015.01.01- 2016.01.01-
2013.12.31 2016.12.31 2016.12.31 2016.12.31

Testing data 2014.01.01- 2017.01.01- 2017.01.01- 2017.01.01-
2014.05.12 2017.12.22 2017.12.31 2017.12.31

a denotes the average number of topics a user participates in.
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Fig. 2. The impact of parameters on Weibo.

space, we only report the results on Weibo dataset, but note
that the results are similar on other datasets. Fig. 2 illustrates
the impact of parameters C and K on Macro-F1 score.

a) Effect of C: C determines the number of classes per
task. We can observe that the performance of MetaTP initially
increases with the value of C but soon becomes stable. This
is reasonable since the tasks are sufficiently sampled, a few
classes in each task are enough to train the MetaTP.

b) Effect of K: we then examine the influence of K, i.e.,
the number of samples for each class in the support set. The
best performance of MetaTP is achieved when K = 5. This
result indicates that our model can adapt to predicting users’
topics of interests with significantly fewer samples.

VI. CONCLUSION

In this paper, we proposed a novel GNN-based meta-
learning paradigm for learning online social users’ preference
for predicting the topics a user would participate in. Specif-
ically, the proposed method MetaTP unifies user-generated

content and social network influence in a graph convolutional
network by aggregating features from high-order connectiv-
ities. Our model can not only identifies users’ personalized
preferences, but also being able to estimate user preferences
with only a small number of contents through learning prior
knowledge to adapt to tasks. Empirical results demonstrate that
the proposed model outperforms baselines on different social
networks.
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