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ABSTRACT
Effectively predicting the size of information cascades is crucial
for understanding the evolution of many social applications, such
as influence maximization and fake news detection. Conventional
methods face the challenge of data imbalance which, in turn, yields
unsatisfactory prediction performance. To prevent the loss func-
tions or metrics from being affected by extreme values and assure
numerical stability, previous works reformulate the problem defini-
tions or adopt other types of evaluation metrics. However, solving
the regression prediction of information cascades from a long-tailed
distribution perspective is under explored. In this paper, we pro-
pose a general decoupling prediction solution – first extracting the
representation, then fine-tuning the regressor, which combines the
original prediction value and weighted bias generated by a sub-
network (SUB) that we designed. Our experiments conducted on
long-tailed benchmarks demonstrate that our method significantly
improves the prediction accuracy over state-of-the-art methods and
mitigates the long-tailed cascade prediction problem.

CCS CONCEPTS
• Information systems → Social networks.
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Figure 1: Motivation: Long-tailed impact

1 INTRODUCTION
Sharing content through social networks such as Twitter, Facebook,
andWeibo has become an important way for people to discover and
consume information. The users’ behavior contributes to the rapid
dissemination of information by forming an information cascade
[23]. Effective prediction of information cascades size after a certain
time-period has become a critical task for understanding influence
maximization, fake news detection, and hate speech diffusion [12].
Related work. In recent years, information cascade modeling and
prediction has spurred significant research interest. One group of ex-
isting works focused on hand-crafted feature engineering [13, 16],
which requires extensive human domain knowledge. Moreover,
some features only apply to certain platform or particular type of
information being diffused, thus they are hard to be generalized or
adapted to new domains. Another group of works explore the dif-
fusion mechanisms of information [9, 11, 15, 20], utilizing various
pattern-based models, e.g., Poisson and Hawkes point processes,
to fit the intensity functions of the arrival process for incoming
events. Although mathematically reliable and with demonstrated
enhanced interpretability, these methods rely on long-term obser-
vation dependencies and are still incapable to fully leverage the
characteristics encoded in the cascades for a satisfactory predic-
tion. Recent deep learning-based models [2, 3, 5, 10, 17, 22, 24]
achieved significant improvements by leveraging recurrent neural
networks (RNN) and graph neural networks (GNN) to model and
learn cascading and topological patterns in information spreading.
Challenge. While the existing methods achieve promising results
in information cascade prediction, they face several non-trivial
drawbacks. What motivates this work is the observation that there
is a lack of methodology to improve predictive performance in the
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settings of long-tailed distribution of the datasets. Conventional
methods for cascade prediction face the challenge of data imbalance
impact. Consider Weibo dataset as an example: Figure 1(a) shows
the cascade long-tailed size distribution of Weibo dataset; and Fig-
ure 1(b) compares the ground truth and the predictions made by
DeepCas [10]. We can observe that feeding the heavy-tailed data
directly into prediction model makes the instance-rich (or head)
data dominate the training procedure, influencing model’s predic-
tions to be conservative and distributed in the relatively middle
range and lowering the prediction performance. To prevent the loss
functions or metrics from being affected by extreme values and
assure numerical stability, previous works reformulate the problem
definitions by either treating it as a class balanced binary classifica-
tion, by predicting whether a cascade will exceed the median size
of all cascades [6], or adopting other evaluation metrics to train the
model, e.g., 𝑟2 and 𝑘-top coverage [14, 20].
Present work. Inspired by the long-tailed distribution of visual
recognition [8], we propose a general decoupling solution for re-
gression task: we first train the backbone to extract information
cascade representations, and then fine-tune the regressor which
combines original prediction values and weighted biases generated
by a specifically designed sub-network. Our main contributions are
as threefold:

• We introduce novel consideration of the impact of long-tailed
distribution and separate the whole training into two stages:
representation extractor and regressor.

• We design a novel probabilistic sub-network to adaptively
adjust the weighted bias for different popularity classes, fa-
cilitating the regressor to rectify the model prediction.

• Our method can be easily incorporated into existing models.
Extensive experiments are conducted on public datasets and
baselines, and the results show that our method (both the
decoupling scheme and sub-network) significantly improves
the prediction performance and explains the prediction well.

2 PRELIMINARIES AND SYSTEM OVERVIEW
Problem Statement. Information cascade popularity prediction
aims at predicting the future size of cascade by observing its early
stage evolution. Let 𝐶 denote an event of interest which, starting
at a time-instant 𝑡0, is propagated through a network. For 𝑁 ob-
served cascades 𝐶𝑖 (𝑡𝑜 ) (1 ≤ 𝑖 ≤ 𝑁 ), the popularity prediction can
be formalized as a regression problem solved by minimizing the
following loss function:

Lloss (Θ) =
1
𝑁

∑𝑁
𝑖=1

(
log𝑒 𝑃𝑖 (𝑡𝑝 ) − log𝑒 𝑃𝑖 (𝑡𝑝 )

)2
, (1)

𝑃𝑖 (𝑡𝑝 ) = ModelΘ (𝐶𝑖 (𝑡𝑜 )) , (2)

where 𝑡𝑜 is the observation time and 𝑡𝑝 is the prediction time,
𝑃𝑖 (𝑡𝑝 ) = |𝐶𝑖 (𝑡𝑝 ) | is the ground truth popularity of cascade 𝐶𝑖 (𝑡𝑝 ),
Θ are model trainable parameters. Traditional baselines use unmod-
ified original data (with long-tailed distribution) for training.
Long-tailed prediction. Since infrequent cascades (e.g., outbreak
tweets) are fewwhen training, models trained with unbalanced data
are prone to under-fit the uncommon cascades. However, in practice,
we expect predictions not to be affected by extreme values/outliers
and the model generalizes well to all sizes of cascades.

Prediction process. Given 𝑋 = {𝑥𝑖 = 𝐶𝑖 (𝑡𝑜 ), 𝑦𝑖 = 𝑃𝑖 (𝑡𝑝 )}, 𝑖 ∈
{1, 2, . . . , 𝑛 } be the training set, where 𝑥𝑖 is the observed informa-
tion cascade, 𝑦𝑖 is the popularity (label) of 𝑥𝑖 . Let 𝑛 𝑗 denote the
number of training samples for class 𝑗 , and 𝑅 denote the number of
classes, then the total number of training samples 𝑛 =

∑𝑅
𝑗=1 𝑛 𝑗 . For

a specific baseline, e.g., DeepHawkes [2] or VaCas [24], we denote
𝑧𝑖 = 𝑓 (𝑥𝑖 ;𝜃 ) as the representation of cascade 𝑥𝑖 , where 𝑓 (𝑥𝑖 ;𝜃 )
is implemented by baseline with parameter 𝜃 except for the final
dense layers (called backbone). The final popularity 𝑦𝑖 = 𝑃𝑖 (𝑡𝑝 ) is
predicted by a regression function 𝑔(𝑧𝑖 ) = W⊤𝑧𝑖 + 𝑏, whereW is
the weight matrix and 𝑏 is bias.
Sampling strategies. To address the representation learning prob-
lem of imbalanced data, various strategies are designed to re-balance
the data distribution [1, 4, 18]. Let 𝑝 𝑗 denote the probability of sam-
pling a data point from class 𝑗 . Considering 𝑝 𝑗 = 𝑛

𝑞

𝑗
/(∑𝑅

𝑟=1 𝑛
𝑞
𝑟 ), 𝑞 ∈

[0, 1], we have the following four basic sampling strategies:
• Instance-balanced sampling. One of the most common strategies is
to allow samples in the training set to have equal select probability,
i.e., letting 𝑞 = 1, the probability becomes 𝑝IB

𝑗
= 𝑛 𝑗/(

∑𝑅
𝑟=1 𝑛𝑟 ).

• Class-balanced sampling. Samples in different classes have equal
select probability, corresponding to 𝑞 = 0 which yields 𝑝CB

𝑗
= 1/𝑅.

In this case, predictions are not skewed to instance-rich classes.
• Squared-root sampling. As a trade-off strategy between instance-
and class-balanced samplings, the 𝑞 is set to 1/2, i.e., probability
𝑝SR
𝑗

=
√
𝑛 𝑗/(

∑𝑅
𝑟=1

√
𝑛𝑟 ).

• Progressively-balanced sampling. This strategy combines the char-
acteristics of previously presented strategies and is utilized by re-
cent models [1, 7, 8]. The sampling probability of class 𝑗 is defined
as 𝑝PB

𝑗
(𝑒) =

(
1 − 𝑒

𝐸

)
𝑝IB
𝑗
+ 𝑒

𝐸
𝑝CB
𝑗

, where 𝑒 is the current epoch and
𝐸 is a hyper-parameter which controls the total number of epochs.
Overview. We now present the details of our framework, which
consists of three main components (cf. Figure 2).

(i) The input data are divided into 𝑅 classes in according to the
cascade popularity. Several sampling strategies in Section 2
are used to re-sample the cascade datasets.

(ii) We train the backbone network (which learns the structural
or temporal characteristics of information cascades) until
convergence, fix its parameters and fine-tune the regressor
(decoupling it from cascade representation, cf. Section 3.1).

(iii) We design a novel probabilistic sub-network (SUB) facili-
tating the regressor for final prediction. SUB rectifies the
weighted bias of the predicted popularity in different classes
for obtaining more accurate predictions (cf. Section 3.2).
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Figure 2: The overall architecture of our decoupling scheme
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3 LONG-TAILED INFORMATION CASCADE
POPULARITY PREDICTION

Previous re-sampling strategies are effective for joint training in
classification long-tailed tasks, however, sometimes unexpectedly
damage the representation learning to some extent [21], making
them unfeasible for regression tasks. We propose a decoupling of
the learned representation and regressor for long-tailed information
cascade popularity prediction.

3.1 Decoupling Representation and Regressor
We first consider decoupling the learned representation from the
regression perspective in long-tailed cascade prediction. Three ap-
proaches are utilized to re-train the regressor aiming to rectify
decision boundaries through fine-tuning, enabling the regressor to
distinguish different cascade classes and predict more accurately.
Joint Training (Joint). As for information cascade popularity pre-
diction, the regressor weightsW and 𝑏 are usually trained jointly
with the backbone parameters 𝜃 for extracting the representation
𝑓 (𝑥𝑖 ;𝜃 ) by minimizing the loss function between the ground truth
𝑦𝑖 and predictionW⊤ 𝑓 (𝑥𝑖 ;𝜃 ) + 𝑏. This is also a typical baseline for
long-tailed information cascade prediction.
Regressor Re-Training (rRT).Wefirst keep the cascade represen-
tations fixed, then randomly re-initialize and optimize the regressor
weightsW and 𝑏 for a small number of epochs using class-balanced
sampling strategy.
𝜂-Normalized Regressor (𝜂-norm). Norms of regressor weights
tend to be similar in rRT after fine-tuning the regressor. In order
to let the norms be more distinguishable, we rectify the imbalance
of decision boundaries by adjusting the regressor weight norms
through a re-scaling procedure: 𝑤𝑖 = 𝑤𝑖/∥𝑤𝑖 ∥𝜂 . In this case, we
keep both the cascade representations and regressor weights fixed
and only learn the scaling factors 𝜂 on the training set using class-
balanced sampling.

3.2 Sub-Network for Two-Stage Prediction
Based on the decoupling scheme introduced above, our method can
be readily used for popularity prediction. However, although the
performance improvements are non-trivial and the trained model
largely mitigates the long-tailed problem (cf. Table 2), we find that
the predictions are still prone to be influenced by instance-rich data,
which can cause performance degradation.

Hence, we resort to reformulating the prediction process in two
stages: firstly, predict the popularity weighted bias by a specifi-
cally designed sub-network (SUB); next, rectify the final popular-
ity according to the previously predicted bias. As shown in the
right of Figure 2, in addition to the original regressor, we use two
branches of MLPs after the backbone network to adaptively adjust
the weighted bias for different classes. One of the new branches
represents the bias of cascade in different classes 𝑏𝑟 , and the other
one through the softmax represents the probability of the bias
𝑝𝑟 . Then the weighted bias 𝑏SUB,𝑖 =

∑𝑅
𝑟=1 𝑏𝑟𝑝𝑟 is obtained and

added to the original predicted value to get the final popularity, i.e.,
𝑦𝑖 = 𝑦𝑖 + 𝑏SUB,𝑖 . The new loss for training the whole network is:

L(Θ) = Lloss (Θ) + CEloss, (3)
CEloss = −∑

𝑟 ∈ |𝑅 | log𝑝𝑟 , (4)

where CEloss represents the cross entropy between true and pre-
dicted popularity classes.

4 EXPERIMENTS
We now describe in detail the experimental evaluations.

4.1 Dataset and Experimental Settings
Dataset. We select two information cascade datasets –Weibo [2]
and Twitter [19] – both follow the long-tailed distribution and
suffer from imbalanced label distribution (cf. Figure 1(a)). For each
dataset, we split it into training (70%), validation (15%), and test
(15%) sets. For our decoupling schemes, we divide training data into
three classes of popularity in decreasing order: many-shot (20%),
medium-shot (60%), and few-shot (20%). The descriptive statistics
of datasets are shown in Table 1.

Table 1: Descriptive statistics of two long-tailed datasets

Dataset
Weibo Twitter

few medium many few medium many

# Cascade 4,259 12,776 4,259 1,820 5,459 1,820
Range 10-32 33-225 >225 11-18 19-332 >332

Avg. popularity 22 88 923 14 101 2,075

Evaluation Protocol. Following [20], we employ our framework
on baselines with two commonly used metrics, i.e., mean square log-
arithmic error (MSLE) and mean absolute percentage error (MAPE).
We note the base of logarithm is 2.
Parameter Setting. For fair comparison, we follow the default
parameter settings of baselines. The observation (prediction) times
of Weibo and Twitter are 0.5 (24) hours and 1 (32) days, respectively.
The hyper-parameter 𝐸 is set to 60.
Baselines. We compare our proposed framework with the follow-
ing state-of-the-art information cascade prediction models:
• DeepCas [10] is the first end-to-end deep learning model for
cascade prediction by using multiple random walk processes.
• DeepHawkes [2] combines both deep learning and Hawkes self-
exciting point process, bridging the gap between prediction perfor-
mance and interpretability.
• VaCas [24] integrates the hierarchical diffusion modeling and
temporal-structural characteristics of information cascades, while
also capturing the diffusion uncertainty.

4.2 Performance Comparison
Table 2 represents the information cascade popularity prediction
results between three baselines and our decoupling schemes. It can
be easily observed that our proposed schemes outperform all the
baselines across both datasets. Specifically, the best performing
scheme (𝜂-norm+SUB) yields 9.7%, 11.8%, and 9.1% improvements
over DeepCas, DeepHawkes, and VaCas, respectively, in terms of
MSLE. The performance improvements of our proposed schemes
demonstrate that decoupling the representation learning and re-
gressor is a promising direction towards addressing the long-tailed
regression for information cascade prediction.
Analysis of Joint training. Figure 3 shows the MSLE comparison
between Joint and decoupling schemes on two datasets(the left is
deepCas on Weibo, the right is VaCas on Twitter). We can see that
when using class-balanced sampling strategy for Joint training,
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Table 2: Overall prediction performance comparison
Dataset Weibo Twitter

Method DeepCas DeepHaw. VaCas DeepCas DeepHaw. VaCas

Plain 3.097 2.556 2.032 7.702 7.216 6.483

Joint 3.054 2.514 1.986 7.655 7.166 6.449
rRT 2.897 2.352 1.954 7.524 7.017 6.289
𝜂-norm 2.806 2.268 1.861 7.417 6.927 6.194

Joint+SUB 2.941 2.361 1.892 7.506 7.015 6.323
rRT+SUB 2.823 2.279 1.873 7.417 6.933 6.224
𝜂-norm+SUB 2.798 2.254 1.847 7.399 6.921 6.187
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Figure 3: Comparisons between different regressors

there is no performance gains. This is contrary to the conclusion
of [8]. We speculate that, different from visual recognition classi-
fication tasks, a more balanced sampling strategy might damage
the universal representation learning of information cascades by
distorting the original data distributions.
Analysis of decoupling schemes.As shown in Figure 3, schemes
rRT+SUB and 𝜂-norm+SUB outperform the jointly trained baselines
by large margins. For example, when using the DeepCas with 𝜂-
norm+SUB, it achieves 4.8% performance improvement compared
to Joint+SUB. In addition, class-balanced sampling strategy per-
forms badly on all decoupling schemes. This might be because
excessively increasing the tail data harms the model fine-tuning
stage. The best performed model is achieved by combining the
𝜂-norm+SUB decoupling scheme and instance-balanced sampling
strategy. Furthermore, we have following key observations:
• Regressor : when we apply the same sampling strategy for repre-
sentation learning, decoupling schemes rRT/𝜂-norm+SUB always
achieve lower prediction error than Joint, which is due to their
effective re-balancing operations by adjusting the updating pro-
cess of regressor’s weights, which is used to match the long-tailed
distribution and the weighted biases generated by sub-network.
• Information cascade representations: when we apply the same de-
coupling scheme, it is rather surprising that the prediction errors of
instance-balanced strategy are consistently lower than other sam-
pling strategies. This finding indicates that training with instance-
balanced sampling strategy is better for information cascade repre-
sentation learning. Our decoupling scheme eliminates the risk of
instance-rich data dominate the regressor fine-tuning stage.
Analysis of sub-network. To investigate the performance of the
sub-network (SUB), we apply the sub-network on plain model, i.e.,
employing the instance-balanced sampling strategy on three base-
lines for joint training. Figure 4(a) shows the performance compari-
son onWeibo dataset. We can observe that even without decoupling
training, sub-network effectively reduces the prediction errors. The
performance boosting may stem from the sub-network’s ability

1.0 1.5 2.5 3.02.0
MSLE

DeepCas

DeepHaw.

VaCas Plain
Plain+SUB

0.1 0.2 0.3 0.4
MAPE

DeepCas

DeepHaw.

VaCas Plain 
Plain+SUB

(a) Plain vs. Plain+SUB on Weibo dataset, backbone is VaCas

Ground truth

Original prediction (w/o SUB)
Rectified prediction (w/ SUB)

ŷi

y∗
i = 1251.7

= 820.9

(b) Case study: An example information cascade (ID is 72978) from Weibo dataset,
observation time is 0.5 hour, prediction time is 24 hours, backbone is VaCas.

Figure 4: Effects of sub-network and intuitive explanations.

to adaptively adjust the weighted bias for many-, medium-, and
few-shot classes, allowing the regressor to predict final popularity
after determining the weighted bias. Consider Figure 4(b), 𝑦𝑖 is the
prediction of plain model, let 𝑦∗

𝑖
be the prediction of plain+SUB,

after introducing the sub-network. Our framework first specifies
the weighted bias based on learned representations (which is a
simpler task compared to predict exact popularity), and then the
regressor predicts the final popularity by adding the weighted bias.
In this way, the model is more robust to extreme values/outliers,
avoiding the predictions skewed by instance-rich data when jointly
training the whole network.

5 CONCLUDING REMARKS
We proposed to decouple the representation and regressor for im-
proving information cascade prediction by decreasing the impact
of extreme values and outliers. Our framework can be easily imple-
mented on top of existing works towards that purpose. Furthermore,
we designed a novel probabilistic sub-network incorporating the
regressor, which appears to be more suitable for regression predic-
tion. Experiments conducted on two long-tailed datasets (Weibo
and Twitter) demonstrated that our proposed framework effectively
improves the prediction performance over the baselines. Our future
work will focus on: (i) extending our solution to other long-tailed so-
cial applications & data scenarios; and (ii) investigating the method
for solving long-tailed problem from learned representations.
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