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ABSTRACT
In theory, the variational auto-encoder (VAE) is not suitable for
recommendation tasks, although it has been successfully utilized
for collaborative filtering (CF) models. In this paper, we propose a
Gaussian Copula-Vector Quantized Autoencoder (GC-VQAE) model
that differs prior arts in two key ways: (1) Gaussian Copula helps
to model the dependencies among latent variables which are used
to construct a more complex distribution compared with the mean-
field theory; and (2) by incorporating a vector quantisation method
into encoders our model can learn discrete representations which
are consistent with the observed data rather than directly sam-
pling from the simple Gaussian distributions. Our approach is able
to circumvent the “posterior collapse” issue and break the prior
constraint to improve the flexibility of latent vector encoding and
learning ability. Empirically, GC-VQAE can significantly improve
the recommendation performance compared to existing state-of-
the-art methods.
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• Information systems → Recommender systems.
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1 INTRODUCTION
The rapid development of the Internet has aroused the emergence
of massive data. As an indispensable tool for information retrieval
and alleviating information overloading, recommender system has
become a research hotspot in the field of information and knowl-
edge management. As one of the most commonly used methods
on recommendation tasks, Collaborative Filtering (CF) selects the
items that users are interested in according to the selection of
groups with common preferences. In recent years, a few studies
have applied neural networks to build more powerful CF mod-
els [1, 4, 15]. Variational auto-encoder (VAE) is considered a robust
feature extraction tool and has been incorporated into CF models
[3, 7, 8, 11, 14]. VAE-based CF models can extract the features of
observed data as latent representations and recommend items by
using an encoder-decoder architecture. However, they still face
several notable challenges despite their early success.
Challenges. When dealing with recommendation tasks, earlier
VAE-based CF models often: (1) face the problem of “posterior col-
lapse”, where the learned latent variables contain relatively little in-
formation and thus the model is unable to train an effective encoder,
only strengthen the decoder’s auto-regression ability; (2) specify
the prior distribution of latent variables as static standard Gaussian
distribution, which makes VAE unsuitable for recommendation
tasks, i.e., the constraint of prior distribution limits the flexibility
of encoders and weakens the recommendation performance.
Contributions. In this paper, we introduce a Gaussian Copula into
the Quantized Autoencoder model for collaborative filtering and
make the following contributions. First, our model uses two meth-
ods to circumvent the “posterior collapse” issue: (1) the Gaussian
Copula for modeling the correlations of latent variables to obtain
complex and accurate posterior distributions; and (2) the Quantized
Autoencoder for learning discrete representations to mitigate the
impact of noise data. Second, our model removes the restriction of
prior distribution in the loss function during the training process,
making the encoder more flexible and suitable for recommenda-
tion tasks. Experiments show that our method outperforms several
state-of-the-art baselines.

2 METHODOLOGY
Figure 1 shows the overall architecture of our proposed GC-VQAE
model. The encoder of GC-VQAE consists two neural networks
and one embedding table which is used to convert the observation
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data into discrete latent representations. The decoder network is to
recover the input data in a generative process.

2.1 Correlation Construction
First, we use 𝑥 and 𝑧 to represent observed data and latent variables,
respectively. In general, 𝑥 is a sparse matrix that records the users’
click history for each item and 𝑧 is the dense latent representation of
𝑥 . In typical VAE-based CF models, each variable 𝑧𝑖 of 𝑧 is assumed
to be Gaussian distribution with mean 𝜇𝑖 and variance 𝜎𝑖 :

𝑞𝜙 (𝑧𝑖 |𝑥) = N(𝜇𝑖 , 𝜎2𝑖 ). (1)

Most VAE-based models adopt the mean-field theory in which
latent variables are independent from each other. Despite their
advantages such as simple and effective, they often face several
notable problems. As the latent variables to be simple, they cannot
accurately represent the characteristics of the observed data. Also,
the reparametric sampling operation introduces a large number
of noise data which prevent the model from effectively utilizing
the information of latent representations generated by the encoder,
and in consequence the decoder can only continuously strengthen
its autoregressive ability to improve the model performance. Such
problems in VAE-based models are known as “posterior collapse”.

Previous works have demonstrated that constructing more com-
plex distributions for latent variables mitigates the “posterior col-
lapse” issue effectively [9]. Motivated by prior success, we intro-
duce Gaussian Copula into the variational inference for a further
performance boost. Considering there exists complex correlations
between latent variables. For example, as shown in Figure 2, we
use two variables to represent four features. Each user likes two
types of items: (1) the items with features A and B; and (2) the
items with features C and D. If the model is based on the mean-field
theory, it can only construct a simple posterior distribution and
make inaccurate predictions. In contrast, if we build the correlations
between latent variables, more accurate posterior distributions can
be inferred, and better recommendations can be made.

According to the Sklar’s theorem, for any multivariate joint
distribution 𝐻 of 𝑛 random variables, we can use a Copula func-
tion to connect their respective marginal probability distributions
𝐹 𝑗 (𝑥) = 𝑃 (𝑋 𝑗 ≤ 𝑥), such that:

𝐻 (𝑥1, 𝑥2, ...𝑥𝑛) = 𝐶 (𝐹1 (𝑥1), 𝐹2 (𝑥2), ..., 𝐹𝑛 (𝑥𝑛)) . (2)
Successfully constructing the distribution 𝐻 means that we can

capture the correlations between latent variables and obtain a poste-
rior distribution with more information contained [12]. Compared
with the posterior distribution whose variables are independent
from each other, the latent representations we sampled from 𝐻 are
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Figure 1: The overall architecture of GCVQAE

more effectively to represent the features of observation data. Here
we introduce our method: augmenting the mean-field distribution
with a copula.

For multivariate standard Gaussian distributions, the key to
model their copula function is to construct the convariance matrix
Σ between all the variables, the Copula function𝐺𝐶 (·) is as follows:
𝐺𝐶 (Φ1 (𝑥1),Φ2 (𝑥2), · · · ,Φ𝑛 (𝑥𝑛); Σ) = ΦΣ (𝑥1, 𝑥2, · · · , 𝑥𝑛) . (3)

As depicted in Figure 1, we use two deep networks to model
our method: inference network and correlation network. Inference
network is used to generate independent Gaussian distributions
for each latent variable 𝑞𝜙 (𝑧𝑖 |𝑥) = N(𝜇𝑖 , 𝜎2𝑖 ). As for correlation
network, it constructs the convariance matrix Σ as follows:

𝜁 = tanh(𝑊 · 𝑥 + 𝑏) (4)

Σ = 𝐼 + 𝜁 · 𝜁𝑇 . (5)

The convariance matrix Σ constructed is positive definite and real
symmetric, and we use it for later reparameterization in GC-VQAE.

2.2 Reparameterization in Copula-Augmented
Distributions

As illustrated in Section 2.1, we propose to use Copula-augmented
Gaussian distribution for latent variables 𝑧 with respect to mean,
variance of each variable’s independent distribution, and their co-
variance matrix. When randomly sampling from the distribution
we need to prevent the gradient vanishing problem when training
the model, which requires an indirect random sampling strategy.
To overcome this hurdle, we apply the reparameterization trick
for multivariate joint distribution sampling proposed in a previous
work [16].

Compare to the reparameterization trick of previous VAE models
which are based on mean-field theory, our method first samples
from the standard Gaussian distribution, and then transform the
samples to ensure their values consistent with the values obtained in
the original multivariate joint distribution. Recall that for users’ ob-
served data, we use𝑀-dimensional vector 𝑧 as latent variables. We
obtain the independent marginal Gaussian distribution of each 𝑧𝑖
and the convariance matrix Σ. Since Σ is positive definite according
to Eq. (5), we can use Cholesky decomposition(a method for matrix
decomposition): Σ = 𝐴𝐴𝑇 to get matrix 𝐴. Then we sample vector

Figure 2: Two different theories of constructing the poste-
rior distribution.
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𝜖 ∼ N(0, 𝐼 ) which has a dimension of𝑀 . We multiply the vector 𝐴
and 𝜖 to have sample 𝜉 = 𝐴 ·𝜖 such that 𝜉 ∼ N(0, Σ). Therefore, the
obtained 𝜉 is equivalent to the values sampled from multivariate
standard normal distribution with the same covariance matrix Σ.
We then convert the 𝜉 to 𝑧 via the following transformation:

𝑧
𝑠𝑎𝑚𝑝𝑙𝑒

𝑖
= 𝑄−1

𝜙
(𝑧𝑖 |𝑥) (Φ(

𝜉𝑖

𝜎𝑖
)), (6)

where𝑄𝜙 (𝑧𝑖 |𝑥) andΦ(·) are cumulative distribution function (CDF)
of 𝑞𝜙 (𝑧𝑖 |𝑥) and standard Gaussian, respectively. 𝜎𝑖 is the stan-
dard deviation of 𝜉𝑖 . The samples obtained by GC-VQAE’s repa-
rameterization trick retain the information of constructed Copula-
augmented posterior distributions, which can be used to decode
and generate better recommendation items. The model’s gradients
can also be back-propagated through the sampled vector 𝑧.

2.3 Vector Quantisation for Latent Coding
In this section, we give the details of our proposed vector quanti-
sation method, which aims to make our model more suitable for
recommendation task. In traditional VAE-based models, LELBO is
the optimization objective defined as follows:

LELBO = E𝑞𝜙 (𝑥)

[
log 𝑝𝜃 (𝑥 |𝑧) + log

𝑝𝜃 (𝑧)
𝑞𝜙 (𝑧 |𝑥)

]
, (7)

where 𝑝 (𝑧) is regarded as the prior distribution of latent variables
that cannot be calculated directly. Thus most VAE-based models
consider 𝑝 (𝑧) as a standard Gaussian distribution and let the con-
structed posterior distribution 𝑞(𝑧 |𝑥) close to the static prior distri-
bution. This assumptionworks greatly inmany generative scenarios
as they can draw samples randomly from the standard Gaussian
distribution and generate various results with a well trained de-
coder. However, recommendation models generally do not require
such prior distribution, which, limits the flexibility of the decoder.

Therefore in GC-VQAE, we replace the sampled 𝑧 with discrete
codes and remove the restriction of prior distribution which renders
more coding space for encoders. We use 𝑧𝑒 to denote the sampled
𝑧 in the following paragraphs.

First, we divide 𝑧𝑒 into groups, the dimension of each group
is 𝐾 , so the number of groups is 𝑛 = 𝑀

𝐾
. We build and maintain

an embedding table 𝐸, 𝑒 ∼ R𝐾×𝐷 is the latent embedding space.
We use the following transformation to replace 𝑧𝑘𝑒 (𝑘 ∈ {1, · · · , 𝑛})
with its nearest embedding vector 𝑒𝑖 :

𝑧𝑘
𝑑
= 𝑒𝑖 , where 𝑖 = argmin𝑗 | |𝑧𝑘𝑒 − 𝑒 𝑗 | |2 . (8)

Then we use the converted 𝑧𝑑 = (𝑧1
𝑑
, · · · , 𝑧𝑛

𝑑
)𝑇 as input to the

decoder network. The optimization objective of the model includes
two parts: (1) training the decoder 𝑝 (𝑥 |𝑧𝑑 ) to make reconstructed
data similar to the observed data; and (2) optimizing the encoder
network to obtain effective latent representations. Since the gradi-
ents cannot back-propagate through the “argmin(·)” function, we
use the following optimization objective instead:

Lloss = log𝑝 (𝑥 |𝑧𝑑 ) + 𝛼 · | |sg[𝑧𝑒 ] − 𝑒 | |22 + 𝛽 · | |𝑧𝑒 − sg[𝑒] | |22, (9)

where sg stands for stop calculating the gradients of a term. To
improve the performance of the encoder, the loss function makes 𝑧𝑒
and 𝑒 close to each other and controls their change via parameter
𝛼 and 𝛽 . We tend to reduce their distance by changing the value of
𝑒 thus 𝛼 is generally larger than 𝛽 . With using vector quantisation

Table 1: Descriptive statistics of three datasets.

Dataset # users # items # rating density

lastfm 1,693 16,410 82,989 0.299%
ML-1M 6,940 3,952 1,000,209 3.65%
Gowalla 29,858 40,981 1,027,370 0.084%

method in latent coding, the model effectively circumvents “pos-
terior collapse” issue and improves the flexibility of the encoder,
which brings obvious advantages when recommending items.

3 EXPERIMENT
3.1 Experiment Settings
Dataset.Our experiments are conducted on three benchmark datasets:
lastfm, ML-1M, and Gowalla. The basic statistics of three datasets
are summarized in Table 1.
Implementation details.We implement our proposed GC-VQAE
in Pytorch. We divide each dataset into training, validation, and test
sets according to the scale of 8:1:1. The learning rate is 0.001 and
we train the model with the Adam optimizer [6]. Hyper-parameters
𝛼 and 𝛽 are set to 0.4 and 0.2, respectively. The evaluation metrics
are NDCG@20, NDCG@100, and Recall@50.
Baselines. We compare the performance of our proposed GC-
VQAE with the following seven methods:

• WMF [5]: is a classic matrix factorization method.
• SLIM [10]: is a linear model which learns an asymmetric
item-similarity matrix.

• NeuMF [4]: a matrix factorization model which explores the
nonlinear interaction between user and item representations.

• CMN [2]: a memory-based CF model.
• NGCF [13]: is a graph-based CF method which integrates
the user-item interactions.

• CDAE [15]: is an augmented denoising autoencoder.
• Mult-VAE [8]: is a state-of-the-art VAE-based CF model.

3.2 Experimental Results
Table 2 present the performance of our proposed GC-VQAE and
other baseline models in terms of NDCG and Recall. Notably, we can
see that limited by the modeling ability of linear model, WMF and
SLIM are not competitive. Compared to linear models, the neural
network-based models can acquire better performance over most of
metrics. Mult-VAE outperforms other baselines, mainly because it
uses KL-annealing to weaken the constraints brought by the static
prior distribution in VAE. Although Mult-VAE effectively utilizes
the feature extraction and autoregressive ability of VAE, it does
not solve the problems in applying VAE to the recommendation
model. As for GC-VQAE, it not only breaks the constraint of static
prior distribution by using vector quantisation, but also models
the complex correlations between latent variables and leads to a
better approximation of the true posterior distribution by intro-
ducing Gaussian Copula into VAE-based CF models. GC-VQAE
effectively addresses the “posterior collapse” problem and achieves
significantly recommendation performance improvements.
Parameter sensitivity. To verify the effect of factor 𝐾 on the per-
formance of our model, we show model’s performance at different
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Table 2: Performance comparison on three datasets.

Dataset lastfm ML-1M Gowalla
Metric NDCG@20 NDCG@100 Recall@50 NDCG@20 NDCG@100 Recall@50 NDCG@20 NDCG@100 Recall@50

WMF 0.197 0.268 0.313 0.268 0.355 0.411 0.095 0.159 0.230
SLIM 0.203 0.276 0.315 0.285 0.364 0.429 0.115 0.172 0.257
NeuMF 0.207 0.280 0.324 0.273 0.362 0.426 0.113 0.168 0.253
CMN 0.211 0.285 0.321 0.278 0.384 0.434 0.116 0.172 0.255
CDAE 0.217 0.291 0.327 0.287 0.374 0.435 0.121 0.179 0.269
NGCF 0.217 0.296 0.334 0.298 0.381 0.439 0.123 0.182 0.267
Mult-VAE 0.219 0.295 0.339 0.299 0.395 0.452 0.125 0.186 0.278

GC-VQAE 0.233 0.306 0.357 0.321 0.407 0.457 0.125 0.187 0.286

Figure 3: Parameter sensitivity of GC-VQAE.

Figure 4: Ablation study on lastfm and ML-1M datasets.

values of 𝐾 in Figure 3. The result suggests that our GC-VQAE
model achieves best performance with 10 on lastfm and 𝐾 = 5 on
ML-1M.When𝐾 changes, the final performance varies greatly. This
phenomenon demonstrates that the dimension of an embedding
group has a vital influence on the recommendation performance.
Ablation study.We perform ablation study by separately showing
how two essential components of GC-VQAE (Gaussian copula and
vector quantisation) affect its recommendation performance. We
create two variants of GC-VQAE by including the Gaussian copula
or vector quantisation part into VAE model, resulting in GC-VAE
and VQ-VAE, respectively. The experimental results are shown in
Figure 4, which proves that both components contribute to the
performance improvement and vector quantisation improves larger
than Gaussian copula.

To investigate the effectiveness of encoding initial latent rep-
resentation 𝑧𝑒 , we implement another variant GC-VQAE∗, which

Figure 5: Convergence of GC-VQAE and GC-VQAE∗

uses MLP to generate 𝑧𝑒 directly instead of drawing samples from
distributions. We present the training procedure of GC-VQAE and
GC-VQAE∗ on ML-1M dataset in Figure 5. The result shows that
the performance of GC-VQAE is better than GC-VQAE∗. With the
training time increases, GC-VQAE∗ tends to overfitting to the data.
We speculate that when the latent factors are presented in the form
of distributions, noise data will be introduced into the model during
the sampling process, which enhances the robustness of the model
and prevents the overfitting phenomenon. In addition, Gaussian
Copula and vector quantisation effectively solve the “posterior col-
lapse” problem which may be caused by these noise data in vanilla
VAE model and improves the recommendation performance.

4 CONCLUSION
In this work, we argued the improper design of VAEs for collabo-
rative filtering. We proposed GC-VQAE that leverages a Gaussian
Copula and vector quantisation to address the “posterior collapse”
issue. Our GC-VQAE model can capture the complex correlations
between latent variables and make the constructed distribution
closer to the true posterior distribution. The sampled latent rep-
resentations are replaced with discrete embedded vectors, which
enables the model to make better use of the information in the
latent representations. The optimization objective does not con-
tain the restriction of the prior, which gives more coding space
for the encoders. Extensive experiments showed that our model
outperforms several state-of-the-art baselines.
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