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Abstract—Understanding in-network information diffusion is a fundamental problem in many applications and one of the primary
challenges is to predict the information cascade size. Most of the existing models rely either on hypothesized point process (e.g.,
Poisson and Hawkes processes), or simply predict the information propagation via deep neural networks. However, they fail to
simultaneously capture the underlying global and local structures of a cascade and the propagation uncertainty in the diffusion, which
may result in unsatisfactory prediction performance. To address these, in this work we propose a novel probabilistic cascade prediction
framework CasFlow. Hierarchical Cascade Normalizing Flows. CasFlow allows a non-linear information diffusion inference and models
the information diffusion process by learning the latent representation of both the structural and temporal information. It is a pattern-
agnostic model leveraging normalizing flows to learn the node-level and cascade-level latent factors in an unsupervised manner. In
addition, CasFlow is capable of capturing both the cascade representation uncertainty and node infection uncertainty, while enabling
hierarchical pattern learning of information diffusion. Extensive experiments conducted on real-world datasets demonstrate that
CasFlow reduces the prediction error to 21.0% by only observing half an hour of cascades, compared to state-of-the-art approaches,

while also enabling model interpretability.

Index Terms—Information diffusion, information cascade, popularity prediction, social networks, uncertainty, graph learning

1 INTRODUCTION

NLINE social platforms such as Twitter, Weibo, Facebook,

YouTube, and Reddit have become the main source of
information to guide individuals” everyday decisions. Vari-
ous news, events, posts, and videos are disseminated as cas-
cades spread by users through social networks [1], [2]. Such
Internet technology and social media facilitate free informa-
tion (both true and false) creation and sharing. Understanding
information cascades becomes important and can lead to sig-
nificant economical and societal impacts, among which pre-
dicting the size of (potentially) affected users after a certain
time-period is one of typical tasks and has attracted great
attention in both academia and industry. It plays a critical role
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and is involved in many down-stream applications — from
rumor detection, through epidemic spread identification and
improved recommendation, to accelerating or suppressing
information propagation [3], [4]. For example, in the global
effort to contain the COVID-19 pandemic, misinformation
abounds and flourishes on the Internet, and people have been
led to believe that COVID-19 can be cured by ingesting fish
tank cleaning products or that 5G networks generate radiation
that triggers the virus. Such misinformation not only causes
panic among citizens but could potentially undercut collec-
tive efforts to control the pandemic. Precisely predicting the
cascade as earlier as possible can help social platforms pre-
vent spreading fake news [5], relieve anxiety [6], as well as
benefiting individuals.

In recent years, a series of works have been focusing on
this area [7], including pattern recognition of information
diffusion and popularity prediction of items over social net-
works and, in a broad sense, they can be summarized into
the following categories:

(1) Feature engineering-based approaches: Researchers in
[8], [9] focus on identifying and incorporating hand-
crafted features for cascade prediction. These models
require extensive domain knowledge and thus are hard
to be generalized to new domains. In addition, many fea-
tures such as user profile and personalized social infor-
mation are usually inaccessible in practical scenarios due
to some privacy concerns.

(2) Statistical approaches: In [10], [11], researchers model
the intensity function of the arrival for incoming messages
to study the propagation process. These methods are mathe-
matically solid and have demonstrated enhanced interpret-
ability, but they require long observation dependency and
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are still unable to fully leverage the information encoded in
the cascade for a satisfactory prediction.

(3) Deep learning-based approaches: Recent advance in
deep learning has achieved great successes for many appli-
cations. In [12], [13], researchers leverage various deep
learning techniques and develop models for capturing the
temporal and sequential processes of information diffusion,
where recurrent neural networks (RNN) such as LSTM [14],
GRU [15], and graph neural networks (GNN) [16] are usu-
ally used for modeling the sequential patterns [17] and
graph structures [18], [19], respectively. However, most
existing approaches suffer from the inefficiency of node and
graph representation and fail to consider the uncertainty in
both node embedding and information diffusion.

Notwithstanding the improvements on cascades model-
ing, existing methods confront several key challenges:

(1) Efficient cascade representation is difficult due to the
varying size (from very few to millions), which makes
many graph embedding-based models biased and inappli-
cable (especially the random walk related ones).

(2) Modeling both local and global structures in context of
popularity prediction is often absent or incomplete, and
embedding a complete social graph with millions of nodes
is computationally expensive or even impossible.

(3) Modeling structural and temporal characteristics of infor-
mation diffusion — initial spreading is crucial for accurately
predicting the size of diffusion, however, it usually lacks
sufficient structural information in practice. Capturing
underlying structural patterns from the limited information
becomes a key to make prediction effective. In addition, the
temporal information, e.g., the order of spreading among
participants, the spread speed, etc., are also vital in cascade
prediction.

(4) Lack of hierarchical cascade modeling at different levels — it
makes the existing methods either focus on roughly estimat-
ing the diffusion size according to few observations, or
study user-level modeling (i.e., activation of individual
users) without consistently investigating the correlation
between node-level (lower) and cascade-level (higher)
representations.

(5) Absence of cascade uncertainty handling — understanding
uncertainty involved in a cascade is important for the for-
mulation of the cascade’s information diffusion process
(e.g., the observed sharing/retweeting innately introduces
noises and uncertainties for the future cascade [9]) — which
is not taken into account in the existing methods.

Our Approach. To address the aforementioned challenges,
we present CasFlow (Hierarchical Cascade Normalizing
Flows) graph learning neural networks —a novel framework
integrating the hierarchical diffusion modeling both on the
global and local information propagation, as well as tempo-
ral characteristics of cascades for predicting the popularity
of an information item (e.g., a post or a paper). Specifically,
CasFlow addresses the existing challenges by: (1) imple-
menting graph wavelets to learn the local cascade represen-
tation which, in turn, allows varying-size diffusion graph
learning; (2) then it employs sparse matrix factorization to
learn global user representation which can efficiently model
user behavior and interactions in a social network; (3) it fur-
ther develops a novel contextualized diffusion embedding
module to learn complicated users’ sharing behavior which
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captures different behavior of a particular user in different
cascades, in addition to the structural and temporal charac-
teristics of information diffusion; (4) to understand both
user-level behavior and cascade-level diffusion effect,
CasFlow introduces a hierarchical variational autoencoder
for simultaneously learning fine-grained and structural pat-
terns of information diffusion with probabilistic latent vari-
ables; (5) by incorporating amortized variational inference
and normalizing flows into the generative model with latent
variables, CasFlow exposes an interpretable and flexible
representation of the complex distribution and long-term
cascading dependencies among nodes in a cascade, thereby
incorporating the uncertainty of each node behavior and the
possibility of cascade size growth.

Our main contributions can be summarized as follows:

o Hierarchical cascade representation: We propose a novel
hierarchical information cascade learning framework which
allows dynamic global and local graph embedding and
jointly models cascades from both a micro (user) and a
macro (overall cascade estimating) level.

e Diffusion uncertainty modeling: CasFlow leverages varia-
tional autoencoders and normalizing flows for embedding
both node- and cascade-level representations as flexible
posterior distributions, which models the probabilities of
sharing behavior among nodes and preserves the uncer-
tainty of information diffusion and cascade growth.

o Contextualized user behavior learning: By introducing a
Bi-directional RNN-based module into cascade graph learn-
ing, CasFlow is able to capture users’ different behavior on
different information, rather than binary prediction on
users’ retweeting/ citing behaviors. This enables integration
of the structural and temporal information associated with
the information diffusion, while considering contextualized
user behavior.

o Extensive experimental evaluation: We conduct experi-
ments on several large-scale real-world datasets, demon-
strating that CasFlow improves the prediction performance
compared to the cutting-edge approaches, and we also pro-
vide explanations on its behavior. Source code of
CasFlow is publicly available at https://github.com/
Xovee/casflow.

We note that this paper is an extension of VaCas [19] pre-
sented at IEEE INFOCOM 2020. The reminder of the paper
is organized as follows. We give a detailed literature review
in the next section. We then introduce the preliminary back-
ground. We present details of our cascade popularity pre-
diction approach CasFlow. In the experiment section, we
evaluate our proposed method using three publicly avail-
able datasets. Lastly, we conclude our work and point out
potential future directions.

2 RELATED WORK

We now review the related literature grouped in three main
categories and position our work in that context by indicat-
ing the respective issues (that are addressed by our
contributions).

Feature-based approaches [20], [21] study the factors
affecting content popularity, including content-related fea-
tures such as the number of hashtags or mentions [22] and
user-related features such as user profiles, user attributes
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and historical activities [23], [24], cascade texts and images
[25], [26], temporal [27] and cascade’s structural [28], [29].
The popularity is predicted via various machine learning
models. Among various studies [30], [31], they confirmed
that user features are informative predictors, especially the
features related to early-forwarding users [32]. Feature-
based approaches are not easy to generalize, since feature
extraction heavily depends on domain knowledge and is
usually specific to data types, not to mention the non-exis-
tence of systematic way to guide such a process.

Statistical approaches such as [33], [34] exploit the pat-
terns in the sequence of retweeting/citing (a.k.a. event) time
and model their arrival process in a generative way. Gener-
ally, the cascade is treated as time-series data, and the
model - i.e., parameter estimation — is built by maximizing
the probability of an event occurring within an observation
time window. Different point processes (e.g., Poisson [35],
[36], Hawkes process [37], [38]), and models (e.g., Cox [39],
[40], Weibull [41], survival analysis [41], and epidemic
model [34]) have been developed. Despite demonstrating
an enhanced forecasting accuracy and explainable predic-
tion, the methods are unable to fully leverage the implicit
information in the cascade dynamics. As shown in a recent
review [42]: Poisson process is too simple to capture the
propagation patterns, Weibull and Hawkes models tend
to overestimate the cascade popularity, probably due to
its rudimentary self-excitation mechanism. In contrast,
CasFlow enables integration of structural and temporal
information in a diffusion process.

Deep learning-based approaches are inspired by the recent
advances of deep neural networks in many fields, and have
achieved significant performance improvements in many
applications, including the popularity prediction of infor-
mation cascades [7]. One of the pioneers — DeepCas [17] — is
a structure-based popularity prediction model learning the
representation of cascade graphs in an end-to-end manner.
Subsequently, DeepHawkes [12] transformed the cascade
graph into a set of diffusion paths according to the diffusion
time, each of which depicts the process of information prop-
agation between users within the observation time. There
are several similar works, proposed to improve the deep
learning-based cascade prediction: DTCN [43], UHAN [44],
Topo-LSTM [45], FOREST [46], and DFTC [47] - all of which
intend to extract full paths of diffusion from sequential
observations of information infections. They leverage RNNs
and attention mechanism to model the information growth
and predict the diffusion size. However, unlike CasFlow,
these approaches usually focus on a simple graph for cas-
cade representation learning, which cannot fully capture
the dynamics of graphs.

Motivated by graph neural networks (GNNs) [16], a
recurrent cascade convolution model CasCN was devel-
oped in [18]. It learns the structure of each cascade by a
dynamic graph convolutional network (GCN) and takes
into account the directionality of cascades, and time decay
effects for cascade prediction. The subsequent work [48]
models the information cascade using multi-task learning
by simultaneously predicting the information popularity at
the macro-level and the user participation in re-posting at
the micro-level. A recent work [49] learns the cascading
effect in information diffusion by exploiting coupled GNNs
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TABLE 1

Mathematical Notations Used in This Paper
Symbol Description
A D Adjacency matrix and diagonal degree

matrix.
Ci(t) Information cascade observed at time ¢.
d Dimensionality of embedding.
E.(u;) Embedding of node u; in cascade graph.
Eq(u;) Embedding of node u; in global graph.
G =V, &) Cascade graph with sets of nodes and
edges.

Gy = Vg, &) Global graph with sets of nodes and edges.
hi,hy Vectors from two-layers of Bi-GRU.
I Information item, e.g., a tweet or a paper.
K Number of transformations of NFs.
M Number of users in cascade.
N Number of cascades.
Py(t) Popularity of cascade at time .
R ={Ri}t,qy, Inputsequences of VAEs.
oty Observation/prediction time.
u; User in cascade.
Z,,2,,73 Latent representations from node level

VAEs, cascade level VAE, and from NFs,
respectively.

to capture the interpersonal influence and individual user
adoption, respectively. However, these approaches rely on
deterministic inference process, which limits their ability to
produce relevant states by sampling from the posterior of
cascades. Therefore, how to incorporate the uncertainty of
information diffusion remains as one of the unaddressed
issues in existing methods.

3 PRELIMINARIES

We now give necessary background and formally define the
popularity prediction problem of information cascades. We
list notations used throughout the paper in Table 1.

Let C}; denote an event of interest which, starting at some
time-instant, is propagated through a network. In the rest of
this study, we consider tweet cascades as example-settings,
however, our work can be directly applicable to other types
of information diffusion (e.g., academic publications, news
articles, online forums, video and streaming media, etc.).
Consider a Twitter user u post a tweet I at time ¢, later,
other users can interact with this tweet, e.g., “commenting”,
“liking”, and “retweeting”. In this paper, we consider
“retweeting” as a major source of information dissemina-
tion in the Twitter social network. Given an observation
time t,, we assume there are totally M involved users who
retweet this tweet I, in consequence a retweet cascade
Ci(to) = {(vi, ui, ti) },cpr, where each 3-tuple represents user
u; retweet user v;’s tweet at time t; < t,.

Existing efforts make different cascade predictions in a
rather similar way. Some works [50], [51] treat cascade pre-
diction as a classification problem — e.g., predicting whether
a cascade can break out a certain threshold [23], [52];
whether a cascade can double its size [9] at the end; or pre-
dict the range that a cascade would mostly like to fall into
[47], [53]. Similar to many previous works [12], [18], we
have our information cascade popularity prediction prob-
lem defined as:
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Fig. 1. lllustration of evolving cascade graph G. for a specific cascade.

Definition 1. Cascade Popularity Prediction — Given observed
snapshot of cascade Cy(t,) at time t,, we aim to predict the future
size Py(t,) = |Ci(t,)| (a.k.a. popularity) of this cascade at a pre-
diction time t, > t,, i.e., the number of users who perform the
retweeting action to the original tweet after t,.

In this formulation setting, rather than observing a fixed
number of retweets [9], we peek into cascade’s early stage
behavior for a fixed time frame, which is a more flexible and
realistic task in real-world applications. Overall, recall that
for N observed cascades (e.g., N tweets) {Ci(t,)}1<p<n, the
popularity prediction can be formalized as a regression
problem solved by minimizing the following loss function:

- B tp))Qa

M%del(ck(to))7

1 N N
6) = 5 > (A

Pi(t,) = M

where Py(t,) = |Ci(tp)| is ground truth popularity for cas-
cade C}; at prediction time ¢, © are model parameters.

This definition is a vanilla version of cascade popularity
prediction. In practical situations, various additional factors
may influence the final popularity of cascades, e.g., previous
work found that textual and semantic features (length,
topics, and sentiments) may have an impact on the future
popularity [54], [55]; image latent features extracted from
neural network learning [25]; social network features that
quantify the influence of individuals, e.g., the follower/fol-
lowee network of Twitter users [17], [23], scientific collabora-
tion network [1], and cascade spreading networks [9], [12].

In this paper, we mainly model and capture two impor-
tant graph-based influencing factors — cascade graph and
underlying user social networks (we call it global graph).
Here we first introduce their formal definitions:

3487

Definition 2. Cascade Graph — Given a tweet I and its corre-
sponding retweet cascade C, a cascade graph is defined as G. =
(Ve, &), with nodes V., = {u;|1 < i < M} being the set of all
re/tweeting users, and E. C V. x V. is a set of M = |C| edges
representing all relationships between users in this cascade
(e.g., retweeting in this case). An example of cascade graph
evolved with time (from t, to t,,) is illustrated in Fig. 1.

Definition 3. Global Graph — The global graph G, = (Vy, &,) is
a collection of nodes and edges. The edge represents a different
node relationship from cascading. For example, Twitter fol-
lower/followee social network is a typical example of a global
graph.

Here the cascade graph implies the characteristics of
information diffusion from a local perspective, while the
global graph provides us a special angle to analyze the dif-
fusion among users rather than only consider independent
cascade graphs. For example, in Twitter, whom a user
decide to follow, or which tweet s/he chooses to retweet, all
the historical behavior were reflected in the structure of
global graph. Earlier work such as [56], [57] simply use
number of followers (i.e., node degrees) as the structural
feature of users, which can not sufficiently capture the user
influences, presences, and preferences. Other structural fea-
tures that have been used in feature-based models [58], [59]
also make strong assumptions with respect to the underly-
ing diffusion mechanism or suffer from overfitting on par-
ticular situation thus can not be generalized to other
scenarios where the diffusion processes are different or
unknown. There’s an urgent need to better represent the
graph data of cascade. In next section, we show how to
model both the cascade graphs and the global graph to facil-
itate the prediction of cascade popularity.

4 METHODOLOGY

In this section, we describe the details of our proposed
model CasFlow, which considers both structural (cascade
graphs and global graph) and temporal (forwarding time
and cascading effect) information to make cascade popular-
ity prediction. As illustrated in Fig. 2, CasFlow consists of
four main components:

(A) Structure Learning. It mainly models and captures
contextualized structural patterns in cascading graphs

CasFlow: Input (A) Structure Learning (B) Temporal Learning (C) Uncertainty Learning (D) Predictor
0 1 - B‘ . ) Node-level VAE Normalizing flow pk(%)
1 e f ? (K) 4
0 10 - i § Z3=17 =
Cilto) —=|l[g 0 0 - [1)——7 @—EC(VC) CzZ® ) MLPs
11 i i
Cascade for'twe'etk 1 g i 5 fx_10 4
by Obser"azlon time 0 00 - 1} Contextualized diffusion R,
o {AhA“""AO embedding () fz O #
Adjacency matrix
foreachtimei Z = {Zl’zz' ’ ZM} fo O #
_..Cascade-level VAE T
Bi-GRU i
. > i H i
i a2 6 g9 fio hy
D ey ncrs | To(0| 2 (6]l
™ — el® ole®| 70 = 7,
\ .. Userrepresematlon learmng | RS e S,

Fig. 2. An overview of our proposed model CasFlow. t,: the first time C), occurs; ¢,: observation time; ¢,: the prediction time.
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during the diffusion and user latent relationships in their
social networks. CasFlow utilizes the techniques from graph
signal processing [60], [61] to generate structural embed-
dings from spectral graph wavelets, and graph representa-
tion techniques to learn representation of every individual
who participated in cascades in the global graph.

(B) Temporal Diffusion Modeling. CasFlow leverages bi-
directional recurrent neural networks to model the temporal
dependencies of information diffusion;

(C) Diffusion Uncertainty Modeling. CasFlow models the
uncertainty in information diffusion and cascade growth
through variational autoencoder and a series of transforma-
tions of latent vectors to a more complex and flexible
approximated posterior distribution via normalizing flows;

(D) Predictor. Combined with recurrent neural networks
and variational inference, the learned cascade representa-
tion are fed into multi-layer perceptrons (MLPs) to make
the final popularity prediction.

4.1 Structure Learning
4.1.1 Contextualized Cascade Graph Learning

To capture the local structural information and obtain a
node-level representation, we employ a graph embedding
technique that learns the diffusion of a spectral graph wave-
let for each node (cf. [62]). We note that other graph repre-
sentation techniques may be used, e.g, DeepWalk [63],
node2vec [64], etc., depending on different learning targets.

Given a tweet C € {C},(Cs,...Cy} and its observed cas-
cade graph G.(t,) at observation time ¢,, its weighted adja-
cency matrix A, can be straightforwardly determined. The
diagonal degree matrix D, can be computed as each of the
diagonal elements is equal to the sum of weights of all edges
connected to that node, say u;. We therefore have an unnor-
malized graph Laplacian L, = D. — A, = UAU”, where U is
the eigenvalue decomposition and A = Diag(X, ..., Ay—1)
is the diagonal matrix of the eigenvalues satisfying Ay <
A1 < ... < Apy-1. We can now calculate spectral graph wave-
lets ¥, , for each node u; € V.(t,) as

v, s = U Diag(gs(No), - - -, gs(Aar—1)) U8, (2)

where §, is the node «’s one-hot encoding vector, and the fil-
ter kernel function g is continuously defined on R*. Here
we use the heat kernel function g,()\) = ¢™* with a scale

Graph Laplacian eigenvalues and eigenvectors possess a
similar notion to a frequency of a signal, i.e., eigenvectors
associated with larger eigenvalues vary fast across the
graph and, therefore, these eigenvectors tend to have differ-
ent values at those locations [61]. In contrast, the eigenvec-
tors associated with smaller eigenvalues carry slowly
varying signal across edges, causing the neighboring nodes
with high weights to be more likely to have similar values.
The heat kernel g; we employed is directly defined in the
graph spectral domain and has a low-pass modulation
effect to force a smooth change from high values to low
ones.

The basic idea of the node embedding is that the coeffi-
cients of the wavelet are directly related to graph topological
properties, thereby containing the necessary information to
recover structurally similar nodes [62]. For a given node u;,
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we treat its wavelet coefficients as a probability distribution
and then utilize empirical characteristic functions [65] to rep-
resent this distribution. For a scalar random variable X, its
characteristic function is defined as ¢y (p) = E[¢?X],p € R.
Specifically, for a given node w; and a scale parameter s, the
empirical characteristic function is defined as

1 .
¢u,s (p) = M Z ewwm,u‘s’ (3)
m=1

where ¥,, s = Zl]za ! 9s(A)UpiUy is the mth wavelet coeffi-
cient of ¥, ;. Then the embedding of node v; in a cascade
graph can be obtained by concatenating values of the real
part and imaginary part: E.(u;) = [Re ¢, 4(p),Im @,
(), py,..py O0 s The first element of node’s embedding
E.(u;) is set to node’s edge weight (which is normalized by
the time user joined in cascade, ie., W, = (t; —t,)/t, €
[0,1],0 < t, < t;) and the dimensionality of the embedding
is d. = 2d.

In addition to the node representation, learning the struc-
tural information with the wavelets is analogous to the dif-
fusion spreads over the network, and allows us to model
the contextualized user behavior —i.e., where we focus is on
the individual node embedding rather than embedding the
entire graph [64], [66] or emphasizing particular tasks [16].
On the other side, with global graph in hand, we now turn
to introduce learning of user representations in the global
graph which expresses user connectivity and implies user
historical behavior.

4.1.2 Scalable Representation Learning in Large-Scale
Global Graph

Different from cascade graph G, global graph G, usually
contains millions of nodes which is hard to model and com-
pute efficiently. Existing graph learning models such as
[49], [64] are hard to be utilized directly in practical cascade
prediction problems. Here we use sparse matrix factoriza-
tion [67] to handle large-sized graph representation learning
in the advantages of efficiency and scalability.

Given global graph G, = (V,, &), which is defined as a
social networking (e.g., the follower/followee graph), or
interaction graph between users (e.g., like/mention/retweet
graph), or both, A, is the weighted adjacency matrix and D,
is the diagonal degree matrix of graph G,. In particular, in
order to avoid infeasible computation of factorization for a
large-sized matrix, a sparse randomized truncated singular
value decomposition (TSVD) was used to learn a distribu-
tional similarity-based node embeddings, which guarantees
both efficiency and effectiveness [68], [69]. Specifically,
according to [67], an entry of a proximity matrix X can be
defined as

X . — {hlpi,j —In(tQs, ), (ui,uy) €,
"o\, (uiyuy) ¢ &'

where 71 is the negative sample ratio, p;; is the weight of
user-pair (u;,u;) in &€, and Qg, ; are the negative samples
with node u;. Then the objective becomes to approximate
matrix factorization of X

(4)

X~ X =Uy,3%4, Vi, ®)
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where Uy, Vy, € RYeI%dy are orthonormal matrices, Edy is a
rectangular diagonal matrix with d, selected non-negative
singular values. Since d, < |V,| the computation of TSVD is
much reduced.

To further speed up the expensive computation for a
large-sized graph, we utilize randomized TSVD to approxi-
mate matrix X in two steps: (1) first we try to find R which
has d, orthonormal columns and let X ~# RR”X (for brevity
we omit the subscripts); (2) assume we have found that R,
then let B =R7X € R%*sl which is a relatively small
matrix that can be computed efficiently by standard SVDs,
thus we have B = SV’ where S,V are orthogonal and ¥
diagonal; finally the approximated matrix is X ~ RR'X =
R(SZV') by setting U=RS. In order to efficiently find
matrix R, we first take Gaussian random matrix Q €
RVsl%ds, compute Y = XQ, then to take the QR decomposi-
tion of Y. After that the embeddings of nodes in V, can be
readily obtained as Ey(V,) = {Ey(w)},,cv, Rdl/SdOE b2

Compare to the embeddings of nodes E «(Ve) in Cascade
graphs which we described in Section 4.1.1, embeddings of
nodes E,;(V,) in the global graph express distinct notions of
information diffusion in graphs. As for cascade graphs,
nodes with similar structural positions will have close
embeddings even if they reside in very different areas of the
graph — whether those rarely appeared influential nodes,
bridging nodes which connect communities, or leaf nodes
which dominant in numbers — their position functionalities
are all captured by heat wavelet diffusion patterns. As for
the global graph, the low dimensional continuous embed-
dings the model learned by a mapping function f:V, —
E,(V,) preserves node proximity associated with the graph,
in which, nodes with similar preferences and behavior will
possess similar geometric embeddings.

4.2 Temporal Diffusion Learning

The embeddings generated from above spectral graph
wavelets and sparse matrix factorization represent the
structural information that nodes carry in the cascade
graphs G, and the global graph §,. Specifically, (1) structur-
ally equivalent nodes in cascade graphs will have similar
embeddings (cf. [62]), — e.g., hub nodes are more influential
than leaf nodes to propagate information to other nodes;
and (2) proximal nodes in the global graph will have close
embeddings, i.e., nodes in proximity to each other carry
similar interests to facilitate the diffusion of information.
However, the temporal pattern encoded in the diffusion
process is also important and has a critical impact on the
popularity prediction of cascades. To capture such temporal
characteristics, we leverage bi-directional GRU (Bi-GRU)
[15] to model the cascading behavior in cascades. RNNs are
a natural choice and have been widely used in the literature
- e.g., [45], [70] have used RNNs for modeling the sequen-
tial patterns during the information diffusion.

For a given cascade of C, we have |V.| node embeddings
E.(V.) = {E(ui)};epy, pre-trained from cascade graphs via
spectral graph wavelets, and for each node u; in V., if v; is
also in the global graph, i.e., u; € V,, then we have its corre-
sponding embedding E,(u;), otherwise we set Ey(u;) =0 €
R% as a cold starting. Afterward, embeddings of nodes
would be sequentially fed through a two layers of Bi-GRU
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to generate context-dependent representation. For each

input E.(u;) and Ey(u;), GRU computes the updated hidden

state with gated units. By concatenating the outputs of the
_o -

forward GRU and backward GRU, the final representation

h, of a cascade is obtained as

E = Concat(E.(u;), E,(u;)), h1 = GRU(E),
— — = =
h, = GRU(E),h; = Concat(h1, hy), hs = GRU(hy),
«— —
h, = GRU(hl) hy = Concat(hy, hy), (6)

where h1 and h1 are full sequence output vectors from
GRU, hQ and hQ are last hidden output vectors. At the
moment hy can be readily used for predicting the cascade’s
popularity, as done in many previous works [17], [18]. We
call this model as CasFlow-RNN.

However, there is a drawback when using only the last
hidden state of an RNN for cascade prediction. This is
caused by the flat sequential generation process followed by
RNNs, where each embedding of a node is only conditioned
on the previous ones. The problem stems from the fact that
the model is forced to generate all high-level structures
locally on a step-by-step basis, and in a deterministic way.
This, in turn, is a heavy constraint for exploring the uncer-
tain dependencies among cascades. In addition, limited by
the capability of real implementation (i.e., LSTM and GRU),
these models cannot handle long-term dependencies and
their performance may significantly drop for predicting the
larger size of cascades.

4.3 Modeling Information Diffusion Uncertainty

In this work, we present a deep generative model to capture
the uncertainty in the information diffusion. Towards this
goal, we employ to model the diffusion uncertainty via vari-
ational autoencoders (VAE) [71]. VAE is a generative net-
work consisting of an encoder and a decoder and provides
a general framework for learning latent representations,
where a joint probability distribution over the data and the
posterior on latent random variables are learned. The
learned representations can be used for both data genera-
tion as well as other tasks, such as classification [72], node
representation [73], predictions [74] and recommendation
[75]. As a probabilistic approach, VAE provides a solid
mathematical foundation to cope with randomness and
uncertainty, which motivates us to model the cascade
uncertainty with such a Bayesian framework.

Node (Lower) Level Uncertainty Modeling. A cascade C' is
composed of an evolving sequence of participants, each one
is associated with a learned representation on behalf of a cer-
tain stage of information diffusion. In Sections 4.1.1 and 4.1.2,
for each node in the cascade graph or and the global graph,
we havelearned E.(u;) and E4(u;) through graph representa-
tion learning, respectively. However, in a more general sense,
any other types of representations can be used here to
enhance the model learning ability, e.g., text/image embed-
dings. Without the loss of generality, we use R;, (i € |V|) to
represent each participant in cascade C, i.e., in our case,
R; = Concat(E,(u;), Eq(u)).

Let Enc(-) be the encoder of inputs, and Dec(-) be the
decoder to reconstruct the inputs, a deep variational
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autoencoder based on neural networks (NN) can be formal-
ized as

z; = Enc(R;),R; = Dec(z;), fori =1,2,.... M
;= NN(Ri),logo? = NN(R), 2 ~ N(it;,0), )

where R, is reconstructed input, z; € R% is the latent vector.
VAE takes a high dimensional data as input to generate a
compressed hidden representation sampled from a condi-
tional prior distribution with w and logo?, then to recon-
struct the original input from hidden representation.

In order to learn a probabilistic representation for cascade
data to capture its dynamics and uncertainty, VAE draw u
and log o from the output of encoder then use reparameteri-
zation to sample latent vector z from Gaussian distribution
[71], i.e., z; = p; + oi¢, where € ~ N(0,1). Moreover, given
each representation of participants in cascade, its marginal
log-likelihood of R; is logpy(R;) = log [ pe(Rilz:)p(z;)dz;,
however, this log-likelihood can not be computed efficiently
in cases of the latent representation having a high dimension.
In addition to the intractable computation of log py(R;), max-
imizing the evidence lower bound (ELBO) by observing a
parametric prior g,(z;|R;) is equivalent or approximate to
the true posterior py(z;|R;)

log pa(R:) = log / po(Rilz:)p(z:)dz;

- Eqd,(zi\Ri)lOg |:q¢(ZZ|Rl)j| + DKL(q¢(zl|RZ)||p9(zZ|R7,))
— log gy (z:i|R;)]

> Eqy(/r,) [l0g po(Ri, i)

where ¢4(z;|R;) (ak.a. encoder parameterized by ¢) is an
approximation to the true posterior py(z;|R;) used to gener-
ate the latent vector z;; and Dk, () is the Kullback-Leibler
divergence. Since the objective is to minimize the KL diver-
gence between the proposed ¢,(z;|R;) and py(z;|R;), we can
alternatively maximize ELBO of logpy(R;,z;) w.r.t. both
parameters 6 and ¢, which are jointly trained with separate
nonlinear functions such as neural networks (NN).

By minimizing the reconstruction error between the
input R; and output R;, the learned latent representation
Z, = {z;},¢), for all participants in cascade C' captures the
data distribution and can be readily used to generate syn-
thetic data or improve particular tasks [72], [75]. Now, we
can immediately combine Z; with two layers of Bi-GRUs
which we introduced in Section 4.2 for predicting the final
popularity of cascades. We call this variant of CasFlow*,
which can be considered as a node (lower) level variational
inference with temporal modeling. However, this model
only captures the individual node uncertainty, ignoring the
evolving uncertainty of the cascade - though it indeed
improves the prediction performance, as we will see in the
experiments. In addition, the lower level variational infer-
ence discards the sequential dependencies among the
participants.

Cascade (Higher) Level Variational Inference. To overcome
the “shallow” generation problem in CasFlow* as men-
tioned above, we combine RNNs with a sequential VAEs, as
shown in Fig. 2. This higher level (cascade) VAE takes M
sequential latent variables Z; = {z,z,,...,z)} generated
from the lower level VAE as inputs, with each z;

2ELBO(R;), (8
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corresponding to a participant in C, to minimize the recon-
struction error. Therefore, we can obtain the cascade level
latent representation Z,, which is expected to capture the
temporal and sequential relationships, and hence express
the causalities and dependencies among information propa-
gation in cascade’s evolving trajectory.

Again, let Enc(-) be an RNN-based encoder of input, and
Dec(-) be an RNN-based decoder to reconstruct the input,
an RNN-based VAE can be formalized as follows:

Z; = Enc(Z,),Z, = Dec(Z,),
Zl = {Z17Z27 .. .,Zj\,j},zl = {21,22, .. -7zﬂf}7
w = NN(RNN(Z,)),logo® = NN(RNN(Z,)), C)

Zy ~ N(p,0%),z; = NN(RNN(Zy)), fori=1,2,..., M,

where Z; is the reconstructed input, M is the length of
sequence, Z, € R is the learned compressed hidden vec-
tor. More specifically, let R = {R;},c,,,| be the input sequen-
ces, the joint probability for a cascade C is formulated as
po(R,Z1,Z5)

= po(Z2]Z1)pe(R|Z1, Zs), (10)

where latent vector Z; are centered isotropic multivariate
Gaussian distributions. The conditional distribution p(Z5|Z;)
is parameterized by an RNN-based encoder and p(R|Z;, Z;)
can be considered as cascade reconstruction from the latent
factors, formulated as

M

po(Z2|Zy) = Z (Zo|f4(21)), Diag(f5(Z1))), (1)
pe(R|Z1,Z2) = N(RIf} (Z1,Z5), Diag(f; (21,2,)), (12)

where the conditional distribution of the observed cascade
R is the multivariate Gaussian with a diagonal covariance
matrix; the mean and dlagonal variance are parameterized
by neural networks f#* and f" with parameters ¥ and ¢.
The ELBO on the marginal likelihood is derived as

log ps(R) > ELBO(R)

Do(Z1)po(Z2|Z1)pe(R|Z1, Z5)
4p(Z|R, Z1)qs(Z1|R)

= Eyy(z,.2,/»)[l0g po(R|Z1, Z5) + log py(Z5|Z;)
+ log ps(Zy) — log qy(Z2|R, Zy) — log gs(Z1|R)]
= Ez,45(21[R) Zo~ay(Z5(21) 108 Po(R|Z1, Z5)]
— Dx1.(gp(Z2|R, Z1)||po(Z2|Z1)) — Dkr.(gg(Z1|R)||pe(Z1)).(13)

= E!I.p(zl Zs|R) log

The first term denotes the reconstruction cost — which is the
expected negative log-likelihood of the observed diffusion,
encouraging the model to efficiently decode the sequential
participants from a set of latent variables Z; and Z,. The
two Dki(-) terms are regularizers that encourage the
inferred latent factors to match the two priors — isotropic
multivariate Gaussian and conditional mixture of Gaussian,
respectively, reflecting the information loss when optimiz-
ing the ELBO.

Variational Inference via Normalizing Flows. Above we have
our model CasFlow incorporated with lower node level
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VAEs and a higher level cascade level VAE to model the
uncertainty during the diffusion of information. Specifically,
the learned latent representation of input data are sampled
from simple families of Gaussian posterior distribution on
both level VAEs. However, in practical situations, the Gauss-
ian assumption of the conditional distribution is not as flexi-
ble as many other complex distributions exist in real-world
applications, especially for information cascade data in
which their popularity distribution is highly skewed [9], [76]
— thereby significantly influence the quality of variational
inference. In order to infer more complex, flexible, and scal-
able posterior distribution families, we turn to utilize a pow-
erful probabilistic technique — normalizing flows (NFs) [77],
[78], [79] - to construct rich posterior approximations.

Algorithm 1. CasFlow Learning

Input: Observed information cascade Cj(t,) and its corre-
sponding global graph G,,.
Output Predicted cascade size Py (t,).
: Obtain the cascade graph G, from Cj(t,);
: Compute graph wavelets ¥, ; for each node v; (Eq. (2));
Compute embeddings E.(V,) in cascade graph (Eq. (3));
Compute embeddings E (V,) in global graph (Eq. (5));
while not convergent do

Train the Bi-GRUs to obtain h, (Eq. (6));

for each user: € |V | do

Compute z; by optimizing Eq. (8) using Eq. (7);

end for
10: ObtainZ; = {z1,22,..., 2 };
11:  Train cascade VAE to obtain Z, by optimizing Eq. (13);
12:  Obtain Z3 using K transformations of Z, (Eq. (15));
13:  Combine h, and Zs for prediction via Eq. (22);
14: end while

PN RN

o

Given a latent random variable Z € R% (in our case the
Z, learned from the higher level VAE), normalizing flows
are generative models aiming to transform observed vector
Z to the desired target latent vector Z\%) through a length of
K invertible mappings with which the Jacobians are tracta-
ble and the functions are differentiable. To be specific, NFs
use a mapping function f : Z — Z' as follows:
af ! -
oZ'

o2) = @ |der | = @t (9

)

where ¢(Z) is the distribution of random vector Z, and the
transformation f is invertible. To obtain a valid probability
density qK(Z(K )) from the initial density ¢y(Z), a K hierar-
chical transformations of NFs successively applying Eq. (14)
to compute the target density

7(K)

= fr(Z%) = fre(fra (.. (15)

S2(1(Z2)))),

In qK(Z( =Ing(Z (16)

Z In det

Once the mapping functions are expressive and appropri-
ate, the learned mixing distribution of latent random vector
is more fit to the true distribution than to simply modeled
as independent Gaussians. To enable efficient inference
with NFs, consider transformation f(Z)=Z + uh(w!Z +

(k>
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b), where w € R%, u € R% and b € R are parameters, h(-) is
a smooth element-wise non-linearity. Then logdet-Jacobian
term (Eq. (14)), approximate posterior distribution
(Eq. (16)), and marginal likelihood (Eq. (13)) can be rewrite
as

W(Z) =W (W'Z+b)w, (17
bt = [detT+uy(@)")] = |1+ u"¥(2)].
K
g (Z") =ng(Z) = Y |1+ uiy, (ZV))], (19)
k=1
K
log ps(R) > ELBO(R) + E |3 11 + uf y,,(z®)||. (0)
k=1

4.4 Prediction
Now we have obtained h, from the two layers of Bi-GRUs
(cf. Section 4.2), Z5 = Z'™) from the hierarchical VAEs and
K transformations of flows (cf. Section 4.3), which can be
fed into MLPs to make the final cascade prediction

Pi(ty) =

MLPs(Concat(ha, Z3)), (21)

by minimizing the mean square logarithmic error (MSLE)
loss function

N
L(Ri; ©) =D (log Pilt,) — log Pilt,))’
k=1

— ELBO(Ry), (22)

where N is the total number of cascades, P;(t,) is the
ground truth (e.g., the number of users who retweet the cas-
cade Cj) and Py(t,) is the predicted popularity for cascade
C, and ELBO(Ry,) is the ELBO that needs to be maximized
as given by Eq. (20).

4.5 Complexity Analysis

Since the popularity of information cascades often follows a
heavy-tailed distribution [9], [42], and typical online social
networks have millions of nodes and edges, efficiently
modeling of both cascade graphs and global graph is of
great importance for cascade learning systems. Compared
to conventional graph cascade models, especially those ran-
dom walk-based [17] and GNN-based models [18], [49],
CasFlow can handle large-sized graphs efficiently, the time
complexities for cascade graphs and global graph are both
linear to the number of edges.

Specifically, recall that |V,| and || are number of nodes
and edges in cascade graph G, |V,| and |£,| are number of
nodes and edges in global graph, d. and d, are dimensions
of nodes in cascade graph and global graph, respectively.

o Complexity for Computing Embeddings of Nodes in Cascade
Graph: the spectral graph wavelets (Eq. (2)) are computed
by Chebyshev polynomials [80], the time complexity is
O(h|&.|), which is linear to the number of edges and £ is the
order of Chebyshev polynomial approximation [81].

o Complexity for Computing Embeddings of Nodes in Global
Graph: as in [67], the computation of TSVD and QR
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TABLE 2
Descriptive Statistics of Three Datasets
Dataset Twitter Weibo APS
# Cascades 88,440 119,313 207,685
#Nodes in G, 490,474 6,738,040 616,316
#Edgesin G, 1,903,230 15,249,636 3,304,400
Avg. popularity 142 240 51
Number of cascades in two observation settings
Train (1d/0.5h/3y) 9,639 21,463 18,511
Val (1d/0.5h/3y) 2,066 4,599 3,967
Test (1d/0.5h/3y) 2,065 4,599 3,966
Train (2d/1h/5y) 12,739 29,908 32,102
Val (2d/1h/5y) 2,730 6,409 6,879
Test (2d/1h/5y) 2,729 6,408 6,879
Basic statistics of cascade graphs
Avg. sequence length 2.196 2.237 3.999
Avg. structural virality 1.995 2.025 3.114
Avg. page rank 0.073 0.045 0.189
Avg. graph density 0.183 0.090 0.320

decomposition is O(d;|V,|), and because of d, < [V,|, the
overall complexity of sparse matrix factorization is
O(d5Vyl + 1€,)-

o Complexity for Other Parts of CasFlow: the time and space
complexities of GRU and MLP are related to the input
dimensions of latent variables.

Under our experimental settings, CasFlow has ~2M
parameters, and costs ~83 ms for one step training with
batch size of 64 and ~6.78 mins for generating embeddings
of global graph G, which has ~15M edges. We conduct time
cost comparison between baselines in Section 5.4. The over-
all learning process of CasFlow is sketched in Algorithm 1.

5 [EXPERIMENTS

We now introduce the details of three benchmarking data-
sets, followed by the evaluation of our models against the
state-of-the-art baselines on information cascade popularity
prediction. Extensive studies on model ablation and
interpretability are also discussed.

5.1 Experimental Settings

Datasets. Cascades can be formed by different types of
information, e.g., social tweets, online images/videos,
emails, news articles, research papers, and so on. We
selected three publicly available datasets — Twitter, Weibo,
and APS - that have been commonly used in previous
related works [12], [18], [36] for evaluating cascade popu-
larity prediction.

o Twitter dataset collected by [82] contains public English
written tweets published between Mar 24 and Apr 25, 2012.
We take hashtags and their adopters as independent infor-
mation cascades. The global graph of Twitter dataset is con-
structed using multiple relations, including reciprocal
follower/followee, retweeting, and mentioning interactions
between users. The cascade graphs are built based on all
three relationships above.

e Sina Weibo is the largest microblogging platform in
China, where every tweet and its retweets can form a
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Fig. 3. The empirical complementary cumulative distribution (CCDF) of
cascade size and structural virality for three datasets. The popularity of
Twitter and Weibo tweets are typically larger than APS papers, but their
structural virality is smaller.

retweeting cascade [12]. The global graph in this Weibo
dataset is constructed by all user retweeting relationships.

o American Physical Society (APS) contains scientific
papers published by APS journals. Every paper in the APS
dataset and its citations form a citation cascade. We define
the global graph in APS as an author interaction graph.

Evaluating models on three distinct datasets offers a sys-
tematic view on the generalization capability, without
domain knowledge and feature engineering. Descriptive
statistics of three datasets are shown in Table 2 and Fig. 3.
We can observe that APS has smaller average popularity
than Weibo and Twitter, and its structural virality (calcu-
lated by Wiener index [9], [83]) is higher than the other two,
indicating that the popularity of scientific papers is mainly
driven by the propagation of other papers rather than
directly citing the original. As for Twitter hashtags, their
structural virality is generally smaller, in which shows the
diffusion mechanism is mainly driven by broadcasting.

In addition, the observation time ¢, is set to 1 and 2 days
for Twitter, 0.5 and 1 hour for Weibo, 3 and 5 years for APS.
We select 32 days as the prediction time ¢, for Twitter hash-
tags, 24 hours for Weibo tweets and 20 years for APS
papers, following previous works [12], [18]. We filter out
cascades whose |C(t,)| < 10. And for cascades whose
|C(t,)| > 100, we only select first 100 participants. We track
Twitter hashtags before Apr 10, ensuring at least 15 days for
each hashtag to grow adopters. Due to the effect of diurnal
rhythm in Weibo, we focus on tweets posted between 8 a.m.
and 6 p.m., leaving each tweet at least 6 hours to reap
retweets. As for APS, we consider papers published
between 1893 and 1997 — so that each paper has at least 20
years (1997 - 2017) to gain citations.

Baselines. To evaluate whether our design is effective in
cascade prediction, we compare our model with following
three groups of baselines that are either unable to capture
deep structural and temporal information or uncertainty.

o Feature Engineering-Based: is the most widely used predic-
tion models for information cascades. These models first
extract hand-crafted features from data, then feed features into
machine learning models for training and evaluating, e.g.,
Szabo & Huberman [27] use observed popularity P;(t,) to pre-
dict Pj(t,) of news articles and online videos; It uses observed
popularity and cumulative popularity series as features. We
denote this method as Feature-S&H. Cheng et al. [9] grouped
five classes of features that drive cascade growth, including
content features, original poster/re-sharer features, structural
and temporal features. Specifically, it includes cumulative
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popularity series, time between original and first participant,
mean time between the first half and the second half of partici-
pants, number of leaf nodes, mean node degree, mean and
max length of sequences. We feed these features into a linear
regression model and a MLP model. We denote these methods
as Feature-Linear and Feature-Deep, respectively.

o Statistical Model-Based. Researchers build time series mod-
els to make cascade popularity prediction, such as Pinto &
Almeida et al. [31], denoted as TimeSeries. Cao et al. combine
both deep learning and Hawkes process for cascade size pre-
diction. It considers three key aspects of Hawkes process, i.e.,
influence of users, self-exciting mechanism, and time decay
effect [12]. We denote this method as DeepHawkes.

o Deep Learning-Based: CasCN is a graph convolution net-
work (GCN)-based framework exploiting both temporal and
structural information for cascade prediction. It samples
sub-cascade graphs and uses LSTM to capture the evolving
process [18]. DMT-LIC is a multi-task model, which jointly
learns user-level behavior and cascade-level prediction via a
shared-representation layer and attention/gated mecha-
nisms [48]. Note that we omit the comparison with some pre-
diction models such as DeepCas [17], CYAN-RNN [13],
Deeplnf [84], FOREST [85], etc., since they mainly predicting
the microscopic node activation rather than cascade popular-
ity, or only considering the structural modality.

Parameter Setting: For each of three datasets, we ran-
domly split it into training set (70%), validation set (15%),
and test set (15%). All models, including ours, are tuned to
the best performance with early stopping when validation
errors has not declined for 10 consecutive epochs. For base-
lines, the learning rate and L, coefficient are selected from

CasCN and DMT-LIC is set to 50; the batch size is 64; and
all the other hyper-parameters are set to the same values as
used in the original papers.

For the scale parameter s used for node embedding
E.(V.) in CasFlow, we use a theoretically justified method
proposed in [62] to select s in the appropriate range
[Smin, Smax)- That is, we directly use two scale parameters
Smin and Spax to generate the final node embedding E.(u;) =
[Ees,in (i), Eesay (ui)] by a concatenation operation, with
d = 10 evenly spaced points, the final embedding size d. is
40. For node embedding E,(V,) in the global graph, embed-
ding size d, is set to 40, too. The dimensionality of the latent
factor Z,, Z,, and Z3 are all set to 64. The number of GRU
units is 128. The K of NFs is 8. The hidden units in two-
layer MLPs are 64 and 32, respectively.

Evaluation Protocols. Following existing works [10], [12],
we use mean square logarithmic error (MSLE) and mean
absolute percentage error (MAPE) for prediction perfor-
mance evaluation, which are defined as

1 . )
MSLE = N;(loggAPi —log,AP)?, (23)
13401 P -1 P,
MAPE:—Z'Ong : — log AP (4)

gt log , AP, ’

where N is the total number of cascades in test set and
AP; = P(t,) — P,(t,) is the incremental cascade size.
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We also report the results of coefficient of determination
(R?) and the percentage of Top-k coverage (COV-k) — the lat-
ter is defined by the ratio of successfully predicted cascades
among the largest k, i.e., given a set of k largest cascades
and a set of k predicted largest cascades, COV-£ is calcu-
lated by the size of intersection of two sets divided by k. We
set k = | N/10] in this study.

Experimental Environment. The experiments are con-
ducted on Intel E5-2680 v4 2.40 GHz, one NVIDIA GeForce
GTX 1080 Ti, and with 64 GB memory. The CasFlow was
trained using TensorFlow with Adam [86] optimizer, the
total time cost (including preprocessing, training, and eval-
uation) is less than an hour.

5.2 Performance Comparison

The overall performance of CasFlow, as well as the baselines,
are shown in Table 3 and Figure 4. We have the following
observations:

(O1): CasFlow outperforms the baselines by a significant mar-
gin. For the Weibo dataset, the results of CasFlow surpass the
best baseline (DMT-LIC) by 12.7%~15.2%, which demonstrates
the benefit of our hierarchical information cascade component.

(02): The gaps between Feature models and other base-
lines are quite small, and in some cases feature engineering-
based and statistical approaches even beat deep learning
models, implying that deep learning models are not always
better than feature engineering-based methods. However, its
performance heavily relies on hand-crafted features, which
are labor intensive and difficult to be generalized to other
scenarios. This is verified by the results of Feature-based on
the APS dataset, where it performs worse on MSLE.

(03): DeepHawkes, on the contrary, does not consider
the topology information of cascades. Therefore, its perfor-
mance relies on the time-series modeling capability and dif-
fusion route, which may prefer to overrate the cascade size
due to its rudimentary self-excitation mechanism [42].
CasCN only leverages the structural and temporal factors
for cascade prediction. However, it focuses on the local
structure learning, ignoring the global user behavior.

(O4): Among the baselines, DMT-LIC performs the best
because of its multi-task learning mechanism, which not
only considers the structural propagation of cascades, but
also investigates the individual behavior of nodes. To an
extent, it implicitly learns the hierarchical information of
cascades. Thus, the CasFlow performance gain over DMT-
LIC illustrates the superiority of modeling the uncertainty
of information diffusion at both the node- and cascade-level.

5.3 Ablation Study
To better investigate the contribution of each component in
CasFlow, we design and implement eight variants:

o CasFlow-LocalStruct and CasFlow-GlobalStruct — we sepa-
rately remove the global node embeddings and cascade
node embeddings, i.e., E;(V,) and E.(V.), respectively.

o CasFlow-Temporal and CasFlow-Structural — we sepa-
rately remove the structural and temporal information,
respectively. For CasFlow-Temporal, nodes in cascade graphs
are directly connected to the root and we don’t use global

graph.
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TABLE 3
Performance Comparison Between Baselines and CasFlow on Three Datasets With Different Observation Times, Measured by
MSLE and MAPE (Lower is Better)

Twitter Weibo APS

Model 1 Day 2 Days 0.5 Hour 1 Hour 3 Years 5 Years

MSLE MAPE MSLE MAPE MSLE MAPE MSLE MAPE MSLE MAPE MSLE MAPE
Feature-S&H 14.792 0.960  13.515 0.983 4.455 0.390 4.001 0.398 2.382 0.316 2.348 0.350
TimeSeries 8.214 0.547 6.023 0.445 3.119 0.277 2.693 0.268 1.867 0.271 1.735 0.291
Feature-Linear 9.326 0.520 6.758 0.459 2.959 0.258 2.640 0.271 1.852 0.272 1.728 0.291
Feature-Deep 7.438 0.485 6.357 0.500 2.715 0.228 2.546 0.272 1.844 0.270 1.666 0.282
DeepHawkes 7.216 0.587 5.788 0.536 2.891 0.268 2.796 0.282 1.573 0.271 1.324 0.335
CasCN 7.183 0.547 5.561 0.525 2.804 0.254 2.732 0.273 1.562 0.268 1.421 0.265
DMT-LIC 7.152 0.467 5.427 0.481 2.752 0.249 2.689 0.270 1.539 0.264 1.398 0.258
CasFlow-LocalStruct 7.254 0.475 5.366 0.370 2.681 0.228 2.488 0.251 1.814 0.267 1.686 0.285
CasFlow-GlobalStruct ~ 11.244 0.704  10.619 0.709 3.014 0.274 2.780 0.291 1.478 0.241 1.546 0.266
CasFlow-Temporal 7.258 0.450 5.436 0.375 2.691 0.228 2.566 0.272 1.798 0.266 1.682 0.283
CasFlow-Structural 10.860 0.680 9.927 0.620 2.939 0.266 2.797 0.292 1.480 0.237 1.574 0.273
CasFlow-RNN 7.273 0.467 5.392 0.377 2.444 0.217 2.234 0.232 1.367 0.227 1.365 0.244
CasFlow-VAE 7.138 0.428 5.178 0.337 2.712 0.260 2.561 0.272 1.463 0.234 1.481 0.271
CasFlow* 7.340 0.435 5.119 0.383 2.429 0.217 2.206 0.245 1.346 0.223 1.373 0.251
CasFlow-noNF 7.272 0.429 5.083 0.345 2.501 0.223 2.291 0.246 1.370 0.227 1.401 0.251
CasFlow 6.954*  0.455*  5.143*  0.361* 2.402* 0.210* 2.279* 0.238* 1.361% 0.222*  1.354*  0.248*
(improves) 12.7%  183%  163% 1243% 112.7% 1157%  118.0% 1134% 112.5%  1159% [-22%  15.4%

A paired t-test is performed and * indicates a statistical significance p < 0.001 as compared to the best baseline method.

o CasFlow-RNN and CasFlow-VAE — the former uses two-
layer Bi-GRU to output h, for modeling cascades and pre-
dicting the cascade popularity, i.e., without hierarchical var-
iational representation learning, which is just on the
contrary to the latter.

e CasFlow* — is the shallow version of CasFlow and only
leverages lower-level uncertainty representation, i.e., Z;,
combined with hy, for cascade popularity prediction.

o CasFlow-noNF — in which we remove the normalizing
flows part, i.e., we use Z, and h, for prediction.

Table 3 outlines the performance comparison among
CasFlow and its variants, which illustrates that: (i)
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Fig. 4. Performance comparison on three datasets. The evaluation pro-
tocols are Top-10% coverage (COV) and coefficient of determination 2.

CasFlow-LocalStruct shows considerably better perfor-
mance than CasFlow-GlobalStruct for Twitter and Weibo,
but for APS, the global structure is a more reliable predictor.
In addition, the combination of local and global structure
indeed improves the performance; (ii) CasFlow-Temporal
consistently outperforms CasFlow-Structural for Twitter
and Weibo. However, the structural information shows
more importance for APS papers. This verifies the benefit to
model both temporal and structural information of cas-
cades, and none of the above two would dominant in all
three scenarios; (iii) Surprisingly, without modeling the
hierarchical cascading effect, CasFlow-RNN obtains quite
well results, which can be attributed to the node embed-
dings of our method that involves both local and global rep-
resentations. In addition, CasFlow-VAE performs very
good on Twitter dataset, which shows another benefit to
model the diffusion uncertainty; and (iv) The fact that both
CasFlow* and CasFlow-noNF show comparable or better
performances demonstrates our motivation of modeling
hierarchical diffusion uncertainties.

5.4 Model Interpretability
We now turn to interpret the performance of CasFlow.
Latent Representation. To have an intuitive explanation
regarding the superiority of CasFlow (especially the VAE
and NF components), following previous works [17], [18],
we plot the learned latent representation of cascades for
CasFlow-RNN, CasFlow-noNF and CasFlow in three
respective lines of Fig. 5 using ¢-SNE [87]. Each point in the
plot represents a cascade in test set (cascades with similar
latent vectors are close in the plot), and the color of point
indicating one of the five feature groups: popularity, struc-
tural virality, first retweet time, edge density, and mean reaction
time. The darker the point, the larger value of that feature to
the cascade. As shown in Figs. 5a, 5b, 5¢, 5d, and 5e, except
cascade popularity, other features - whether structural or
temporal - didn’t show explicit patterns w.r.t. cascades’ 2-D
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Fig. 5. Visualization of the learned latent representation on Weibo dataset (observation time is set to 0.5 hour) using t-SNE. Each point is a sample
from 4,599 test cascades. The darker the point, the larger the value of popularity, structural virality, first retweet time ¢,, edge density, or mean reac-
tion time, for each one of five plots in one line, respectively. First line (a-e): latent representation from the last MLPs layer of CasFlow-RNN; Second
line (f-j): latent representation Z, from CasFlow-noNF; Third line (k-0): latent representation from the last MLPs layer of CasFlow.

projections. This phenomenon indicates that by only utiliz-
ing the RNNs, our model cannot explain the relationship
between cascade features and the learned latent representa-
tions. Instead, points in Figs. 5f, 5g, 5h, 5i, and 5j are latent
vectors Z, retrieved form cascade VAE of CasFlow-noNF,
and the shapes of the plots are consistent with the Gaussian
assumption of VAE in our model. We can see that except
the first retweet time, other features show clear clustering
effects compared to the ground truth popularity, i.e., with
larger structural virality and smaller edge density and mean
reaction time, the popularity of cascades tends to be larger
than others. What is also worth noticing is that in

b 2
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Fig. 6. Impact of four important hyper-parameters of CasFlow on Weibo
dataset (observation time is 0.5 hour), measured by MSLE and MAPE.
The value of vertical line indicates default parameter settings in
experiments.

CasFlow we did not use these features for training/testing
but the model itself learns meaningful and explainable
semantics of which feature correlates to the future popular-
ity. Finally, as shown in Table 3 and Figs. 5k, 51, 5m, 5n, and
50, our model learns better representations in terms of both
accuracy and interpretability compared to CasFlow-RNN
and CasFlow-noNF - e.g., Fig. 5m indicates large cascades
are often associated with smaller first retweet time t; — which
points out the benefits by incorporating the variational
inference and normalizing flows into the learning of popu-
larity prediction.

Hyper-Parameter Sensitivity. CasFlow involves many hyper-
parameters, some of which are important and might
affect the model performance. We use the Weibo dataset
to conduct an ablation study on four important hyper-
parameters. The value of vertical line in Fig. 6 indicates
default parameter setting used in experiments. Detailed
results are explained below.

o Impact of weight for VAE and NF losses: we give a weight
on the losses of VAEs and NF (cf. Egs. (13) and (20)), which

Sh+
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4hd Training time ~<€——— [ Weibo
) 0 APS
2 3hy
=
5} Preprocessing time ~<€———
o e —
=

Featuré-Deep Deepl—iawkes Cas'CN DMf-LIC CasIl-‘low

Fig. 7. Time cost of CasFlow on preprocessing & training compared to
baselines on Twitter (1 day), Weibo (0.5 hour), and APS (3 years).
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Fig. 8. Stack plot for the proportion of adopters/retweets/citations changed over time on three datasets. Inset: the distribution of cascade popularity is
depicted on the upper right corner of each figure, both of which follow power-law distributions.

trades off the supervised learning w.t.r. cascade popularity
and uncertainties during information diffusion.

o Impact of dimensions of latent factors and cascade embed-
ding: we change the dimensions of latent factors dz and cas-
cade embedding d,. + d, from 8 to 256. We can see that large
embedding size sometimes may degrades the performance.

o Impact of NF transformations: we tried different values of
NF transformations from 1 to 32 and observed that the best
performance was obtained when K = 8.

Other two datasets have similar observations which are
ignored due to the space limitation.

Time Cost. We compute the time cost of preprocessing &
training for CasFlow and baselines, where CasFlow is more
efficient compared to CasCN and DMT-LIC and compara-
ble to DeepHawkes. The results are shown in Fig. 7.

Revisiting Cascade Distribution. Finally, we investigate
the cascade distribution of different types of information,
which could help understand interpretable factors gov-
erning the cascade. Fig. 8 plots the cascade distribution of
the three datasets. For Twitter and Weibo, the top 20%
popular hashtags/tweets yield more than 80% adopters/
retweets soon after posting, which shows a Pareto distri-
bution (i.e., the 80-20 rule). For APS, the situation is simi-
lar but with relatively moderate monopoly, e.g., around
50% of the citations come from the 10% most influential
papers after 20 years of publishing. Moreover, the decay-
ing trend of different information considerably varies
from each other, e.g., the most popular hashtags/tweets
dominate the hot topics at the very beginning, while most
cited papers are gradually and continuously increasing
their influence. Therefore, how to identify the influential
information, as well as discrimination time decaying fac-
tor for different kinds of information, are interesting
topics left as our future work.

6 CONCLUSION

In this work, we introduced CasFlow — the first Bayesian
learning-based approach for cascade popularity prediction.
It leverages a hierarchical variational information diffusion
model to exploit the uncertainties at the node level and the
cascade level, and learns the posterior of cascade distribu-
tion with variational inference and normalizing flows. Our
experimental evaluations on three large-scale real-world
datasets demonstrated that CasFlow significantly improves
the cascade popularity prediction accuracy, outperforming
the state-of-the-art baselines. In addition, CasFlow provides

interpretation of its behavior to some extent. Overall, our
findings indicate that training and optimizing diffusion-
related tasks using deep generative models is a promising
direction for future investigation.

As part of our future work, we plan to extend CasFlow to
incorporate other features — e.g., fusing multiple content
features such as texts and figures of microblogs, titles and
abstracts of papers, as well as other individual features
including number of followers of bloggers, h-index and his-
torical publications of scholars, etc. More complicated graph
learning settings can also be considered, e.g., heterogeneous
information networks (multiple node/edge types associ-
ated) and dynamical graph neural networks (learning repre-
sentation of evolving graphs). Other forms of variational
inference and normalizing flows [88] can be incorporated
into CasFlow to learn high-level latent variables and rich
families of posterior distribution. CasFlow can be general-
ized to many business-related contexts, in particular in
problem domains such as effective advertising and interpre-
tation of viral information spreading (e.g., rumors, fake
news, and epidemic) in network settings.
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