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Abstract—Cross-network alignment aims at identifying users
who participate in different social networks, which benefits a
variety of downstream social applications such as precise content
delivery, fraud detection, and content/user recommender systems.
Recent advances in network representations and graph neural
networks have spurred various network structure-based methods
for capturing underlying node similarities across social networks,
thereby addressing the network alignment problem. However,
most of the existing solutions rely on embedding methods that
compute node similarity in Euclidean space, resulting in severe
distortion or semantic loss when representing real-world social
networks, which are usually scale free and with hierarchical
structures. We address these issues by presenting a novel
model: Hyperbolic Graph Embedding for Network Alignment
(HGENA), which learns the structural semantics more efficiently
by embedding nodes in hyperbolic space instead of Euclidean.
HGENA overcomes the scalability issue since it requires far fewer
dimensions in Riemannian manifolds and increases the capabil-
ity of learning hierarchical structures, while enabling smaller
distortion for tree-liked networks to facilitate node alignment.
We also introduce alternative network mapping functions to
compute node similarity across-network based on its distance
on the Poincare ball. Experimental evaluations conducted on
real world datasets demonstrate that HGENA achieves superior
performance on social network alignment, especially for more
tree-liked networks.

Index Terms—Social networks, network alignment, hyperbolic
space, hierarchical structure.

I. INTRODUCTION

In recent years, we have witnessed the rapid growth of on-
line social networks (OSN) such as Twitter, Facebook, TikTok,
Instagram, Weibo, and Foursquare. Various OSNs may pro-
vide distinct social functions, e.g., people on these platforms
posting microblogs, shopping goods, socializing with netizens,
consuming and interacting online content such as news, music,
and videos. Take Twitter and Foursquare as an example: a user
can (re)tweet messages on Twitter but share their location-
based activities on Foursquare. Users join in different networks
for different social purposes, which raises a fundamental but
challenging task in the research community, i.e., identifying
and linking the same user across OSN platforms. This problem
is also known as network alignment (NA) or user identity
linkage in the literature [1]–[3], and plays a vital role in

This is the author version of the paper presented at IEEE GLOBECOM ’21
doi: 10.1109/GLOBECOM46510.2021.9685690

-hyperbolicity = 1.5δ

Foursquare

-hyperbolicity = 1.0δ

Twitter

Fig. 1: Node degree distributions of two social networks.

analyzing social networks and improving various applications
such as cross-platform personalized recommendation, criminal
behavior identification, mutual community detection, and user
experience optimization [4]–[6].
Related work. Many research works have addressed the NA
problem. Earlier studies typically focused on aligning the users
by extracting informative features such as username, gender,
behaviors, among many other user profiles [7], [8]. However,
these features may not always be available due to privacy
concerns. More importantly, these methods require manual
feature engineering and effective features in one scenario
may not generalize to other OSNs. Subsequently, structure-
aware approaches [1], [2], [5], [6], [9]–[16], which aim at
linking the users across OSNs based on the similarity of
topological semantics, have been proposed to overcome this
deficiency. These approaches are based on the fact that social
relationships among users (e.g., follower and followee rela-
tionships) contribute to the network structures, which play an
important role in addressing the NA problem. Inspired by the
recent advances on deep graph representation techniques and
graph neural networks (GNNs), some approaches embed user
identities into low-dimensional feature vectors and then align
them based on the similarity of their embeddings in Euclidean
space. For example, DeepLink [2] samples a sequence of
nodes from the graph and encodes the nodes using neural
networks. dNAME applies graph convolution network (GCN)
[17] to learn the structural similarities across OSNs while
providing explainable alignment results using robust statistics.
Recently, several models have begun to address different
aspects of problems in NA, including efficiency [6], graph



compression [3], community [15], [18], adversarial attack [16]
etc.
Challenges. Although embedding-based methods have been
successful in tackling the NA problem, the existing approaches
capture the structure characteristic by learning network repre-
sentations in the Euclidean space – which is restricted by the
dimensions of the embedding space that may be prohibitively
large to model complex relations. On the other hand, it has
been shown that large-scale graphs such as social networks
exhibit strong hierarchical structures since the node degrees
follow power-law distributions [19], as shown in Fig. 1 –
implying tree-liked structures of the networks. That is, a
small fraction of users are very popular and attract more
followers, while most of the others have very few followers.
Nevertheless, the extremely imbalanced node distributions
make the Euclidean space-based graph embedding distorted,
because the number of nodes in Euclidean space increases
polynomially with the radius, which restricts their ability to
capture complex underlying hierarchical structures.

In this study, we present an alternative perspective to solve
the NA problem and propose HGENA – Hyperbolic Graph
Embedding for Network Alignment – a novel NA model that
learns network embeddings and aligns users in the hyperbolic
space. Our work is inspired by the recent success of hyper-
bolic geometric learning [20]–[22] in hierarchical structures.
Specifically, HGENA embeds the networks in Riemannian
manifold with constant negative curvature, where the number
of nodes within a ball area grows exponentially with the
radius. This property allows us to account for the power-law
distribution of nodes and increases the model’s capability to
learn complex structures and patterns on large networks. The
main contributions of this study are three-fold:

• We present a novel way of embedding heterogeneous net-
works and aligning users across social networks in the
hyperbolic space, enabling more efficient structural pattern
learning and capturing latent hierarchies for more accurate
network alignment.

• We propose a novel network alignment model, which, to
our knowledge, is the first hyperbolic graph embedding
solution in literature. It preserves the distance between nodes
and computes the mapping similarities using Poincaré ball
distance that can be easily trained with gradient descent
optimizations.

• We conducted extensive experiments on real-world datasets
and the results show that HGENA outperforms state-of-the-
art methods in both alignment accuracy and efficiency.

We note that hyperbolic geometry has been previously
adopted to the NA problem, e.g., in PERFECT [18] and HUIL
[23]. However, in contrast to previous works, we derive the hy-
perbolic embedding with graph neural networks and leverage
the true Fréchet Mean operation to promote the anchor node
representation. Additionally, spaces with different curvatures
contribute differently to the hyperbolic representation learning,
which is set to a fixed number in PERFECT and HUIL. To
address this, we study the effect of curvature to the NA task’s

performance (cf. IV-4).

II. PRELIMINARIES

In this section, we present the necessary background re-
garding Riemannian manifolds and basic operations for the
Poincaré ball model of hyperbolic space, followed by the
formal definition of a network alignment problem.
Hyperbolic geometry. There are three types of the Rie-
mannian manifolds: Euclidean geometry (constant vanishing
curvature), spherical geometry (constant positive curvature)
and hyperbolic geometry (constant negative curvature). In
this paper, we focus on hyperbolic space expanding faster
(exponentially) than Euclidean spaces (polynomially) [24].

A hyperbolic space Hd is a d-dimensional Riemannian
manifold with constant negative curvature c. Different from
the Euclidean space Rd, there are several isomorphic models
in hyperbolic space Hd, including the hyperboloid model, the
Beltrami-Klein model, the Poincaré half-plane model and the
Poincaré ball model Bd. For simplicity, this study is based on
the Poincaré ball model, due to its conformality and convenient
parameterization [25].
Gyrovector Spaces. We use Möbius gyrovector space [20],
[26] to describe basic operations (vector addition, subtraction
and scalar multiplication) in Poincaré ball model.

Let Bn
K be the n-dimensional Poincaré ball model with cur-

vature K < 0, which is the Riemannian manifold (Bn
K , gBK

x ),
where Bn

K = {x ∈ Rn :∥ x ∥< − 1
K } is the open ball of

radius 1√
|K|

. Its metric tensor is gBK
x = (λK

x )
2
gE , where

λK
x = 2

1+K∥x∥2 is the conformal factor and gE = In is the
Euclidean metric tensor [27]. The distance between two points
x,y ∈ Bn

K is given by:

dKB (x,y) =
1√
|K|

arccosh

(
1− 2K∥ x− y ∥2

(1 +K∥ x ∥2)(1 +K∥ y ∥2)

)
(1)

and for x,y ∈ Bn
K , the Möbius addition is defined as:

x⊕K y =
(1− 2K⟨x,y⟩ −K∥ y ∥2)x+ (1 +K∥ x ∥2)y

1− 2K⟨x,y⟩+K2∥ x ∥2∥ y ∥2
(2)

For the tangent vector v ̸= 0, and x,y ∈ Bn
K (y ̸= 0), the

exponential map expx(v) : TxB → B and logarithmic map

TxB

B
expx(·)logx(·)

x

Fig. 2: The exponential and logarithmic maps.



logx(y) : B → TxB in Poincaré ball model (see Fig. 2 for an
example) are defined as:

expK
x (v) = x⊕K

(
tanh

(√
|K|λ

K
x ∥ v ∥
2

)
v√

|K|∥ v ∥

)
,

(3)

logKx (y) =
2√

|K|λK
x

tanh−1 (
√

|K|∥ −x⊕K y ∥) −x⊕K y

∥ −x⊕K y ∥ .

(4)

A generalization of Euclidean operations to Poincaré ball
model, e.g., Matrix-vector multiplication is provided in [20]:

A⊗K x = expK0 (A logK0 (x)), (5)

and the bias translation can be computed as:

x⊕K b = expx(P
K
0→x(b)), (6)

while the activation function is defined as:

σK1,K2(x) = expK1
0 (σ(logK2

o (x))). (7)

We now provide formal definitions characterizing our prob-
lems:

Definition 1 (Hyperbolic Graph Representation Learning):
Given a graph G = (V, E) with Euclidean space node features
(XE

i )i∈V , our purpose is to learn d-dimensional representation
(XH

i )i∈V in the hyperbolic space, where the superscript E

indicates features lie in the Euclidean space, and superscript
H represents the hyperbolic space.

Definition 2 (Network Alignment): We have a pair of input
networks Gs = {Vs, Es} and Gt = {Vt, Et}, a set of observed
anchor links Sanchor = {(u, v)|u ∈ Vs, v ∈ Vt}, the task of
network alignment is to predict those unobserved anchor links
across the two social networks Gs and Gt.

Note that the fully aligned paired networks are rare in real-
world, we only study the partially aligned networks.

III. METHODOLOGY

We now present the details of HGENA, our hyperbolic
graph embedding approach for network alignment. Focusing
on aligning two networks, we show how to represent differ-
ent networks using a hyperbolic graph convolutional neural
network [21]. Moreover, with the hyperbolic embeddings of
two networks in hand, we devised a novel method to learn the
mapping across networks and find the corresponding anchor
nodes based on the similarity in the hyperbolic space.

A. Hyperbolic Graph Network Representation

Given two graphs Gs and Gt, it is crucial to capture the
latent network structural semantics and to represent anchor
nodes across the domains. An intuition solution is to directly
learn node representations in hyperbolic space which, however,
did not has closed-form solutions. Two frequently used opera-
tions are exponential and logarithmic maps, which can flexibly
project representations between tangent and hyperbolic spaces.

1) Mapping Euclidean features to hyperbolic space: Pre-
vious network alignment studies [1], [3], [5] mainly paid
attention on Euclidean feature extraction and node represen-
tation learning. Considering the extension of the pre-trained
Euclidean embeddings and features, we first map them to
the Poincaré ball manifold using the exponential map. Given
Euclidean features xE ∈ Rn and the reference point (o =
0) ∈ Bn

K that used to perform tangent space operations, we
have ⟨(0,xE), o⟩ = 0. Therefore, we interpret (0,xE) as a
point in ToBn

K and use Eq. (3) to map it to Bn
K as:

xB = expKo ((0,xE)) = tanh(
√
|K|||xE ||) xE√

|K|||xE ||
. (8)

2) Hyperbolic graph convolution: With the obtained node
features in hyperbolic space xB and two social networks Gs

and Gt, we would like to establish a model architecture that
can learn the structures of the hierarchical network. Towards
this goal, we learn node embeddings using a hyperbolic
graph convolutional neural networks (HGCN) [21], which
generalizes the Euclidean GCNs [17] in the hyperbolic space.
It consists of three layers, including hyperbolic linear feature
transformation, attention-based neighborhood aggregation, and
non-linear activation:

(i) Hyperbolic linear feature transformation. The feature
transformation layer maps the embedding space of one
layer to the next layer, it use Eq. (5) and (6) to perform
weight matrix multiplications and bias addition, respec-
tively. Therefore, the representation updating rule of the
l-th layer is:

hl
i = (W l ⊗Kl−1 xl−1

i )⊕Kl−1 bl, (9)

where W is the weight matrix, b is the Euclidean bias
vector, and xl−1

i denotes the embedding of previous layer.
(ii) Attention-based neighborhood aggregation. Given a node

xi ∈ Bn
K , in order to aggregate the neighborhood in-

formation of xi, HGCNs first employ the logarithmic
map to project neighbors (xj)j∈N (i) to tangent space
at the center node xi. Subsequently, the neighbors are
aggregated with weights (wij)j∈N (i) in the tangent space:

yi = AGGK(xi) = expKxi

 ∑
j∈N (i)

wij log
K
xi
(xj)

 .

(10)
(iii) Non-linear activation. With the aggregated embedding yi,

a hyperbolic non-linear activation σ(·) is computed as
Eq. (7) in the tangent space:

xl
i = σ⊗Kl−1,Kl

(yl
i), (11)

where Kl−1 is the input hyperbolic space curvature and
Kl is the output hyperbolic space curvature.

3) Improved neighborhood aggregation: The attention-
based neighborhood aggregation used in HGCNs is the tangent
space aggregation, which is a kind of pseudo-Fréchet means.
It has been proved by [28] that applying the mean operation in
the tangent space results in worse performance on downstream



tasks than the true Fréchet mean [29]. We adopt an improved
neighborhood aggregation layer which is based on Fréchet
mean neural network. This layer considers the Fréchet mean as
an argmin operation. Let xi ∈ Bn

K be a point in the Poincaré
ball, (xj)j∈N (i) be the neighbors of xi, (wij)(j∈N (i)) be their
weights, and further let their weighted Fréchet mean be the
solution to the following optimization problem:

µfr = argmin
y∈Bn

K

f(y), (12)

f(y) =
∑

j∈N (i)

wij · dKBn(xj ,y)
2 =

∑
j∈N (i)

wij√
|K|

(13)

arccosh2

(
1− 2K∥xj − y∥2

(1 +K∥xj∥2)(1 +K∥y∥2)

)
.

B. Network Alignment in Hyperbolic Space

Through the hyperbolic graph network representation learn-
ing, we obtain the node embeddings of a pair of networks in
hyperbolic space. The final step in HGENA is to align two
networks using the learned embeddings. Given a node from
one of the paired graph, we need to find the corresponding an-
chor node in another graph. However, the learned embeddings
for two graphs lie in different hyperbolic spaces, requiring a
hyperbolic mapping generator that projects two networks to
the same representation space.

1) Hyperbolic mapping layer: In Euclidean space, the map-
ping function can be defined as f : Rm → Rn, f = σ(Ax+b)
where A ∈ Rn×m, x ∈ Rm, b ∈ Rn and σ is an activation
function. Since learning the mapping function in the Euclidean
space is not applicable to the embeddings xs and xt from
hyperbolic space, we utilize the Poincaré ball multiplication
and bias addition operations defined in Eq. (5) and (6) to
perform hyperbolic mapping g : Bm → Bn as:

g = σK(A⊗K x⊕K b), (14)

where A ∈ Rn×m,x ∈ Bm,b ∈ Bn. In this study, we use
two layers to implement the hyperbolic mapping generator.
The process of network embedding mapping in the hyperbolic
space is illustrated in Fig. 3.

Anchor 

Node

g

xsxt g(xs)

dKB (u, v)

Fig. 3: Illustration of network mapping in the hyperbolic space.

2) Cross network information entropy: Comparing the sim-
ilarities of the anchor node embeddings is the last step in the
NA problem. We denote the observed source set as S ⊂ Vs

and S = {u1, u2, . . . , u|C|}, the corresponding target set as
T ⊂ Vt and T = {v1, v2, . . . , v|C|}. For a specific anchor
node ui ∈ S, the node vi with the same subscript as ui is
the corresponding anchor node. To find the real vi for ui,
we compute all pairs of similarities between node ui and the
candidate node set T . Note that we use Poincaré ball distance

TABLE I: Statistics of Two Datasets

Dataset |V| |E| δ-hyperbolicity # anchor links

Foursquare 5,313 76,972 1.5 3,148Twitter 5,120 164,920 1.0

Lastfm 2,138 4,259 3.0 1,561MySpace 2,117 3,798 3.0

Eq. (1) to measure the similarities between two nodes in the
hyperbolic space. Therefore, a distance regularizer is used to
cluster the anchor nodes together and push away others. To
the end, the objective function for cross network alignment in
HGENA is defined as:

L =
∑
i

dKB (ui,vi) + log
∑
i

∑
j ̸=i

exp(−dKB (ui,vj)). (15)

IV. EXPERIMENTAL RESULTS

In this section, we first present experimental settings and
the analysis for dataset property. To demonstrate the effective-
ness of HGENA, we then conduct extensive experiments and
evaluate the performance of them.
Datasets We use the following two real-world social network
datasets for evaluations. The statistics of them are described
in Table I.

• Foursquare-Twitter (F-T): is published in [30], where
nodes (users) of two social networks are partially aligned.

• Lastfm-MySpace (L-M): is published in [31] and publicly
available at https://aminer.org/cosnet. Due to privacy con-
cerns, it only provides partial anchor nodes.

To better understand the underlying structures of paired
networks, we investigate the graph properties of Foursquare
and Twitter. The undirected graph is established according
to follower-followee relations. Previously we show the node
degrees in two networks (cf. Fig. 1), which follows clear
power-law distributions, i.e., a minority of nodes are connected
to many neighbors (with higher degrees), while most are
only linked to a few users. Further, the degree distributions
reveal complex hierarchical structures as well as the scale-free
property in two paired networks [32], [33]. This observation
also proves our motivation to study the network alignment
problem in hyperbolic space in a graph learning manner.

In addition to node degrees, we use Gromov δ-hyperbolicity
[34] (a notion from geometric group theory) to measure how
tree-like is the structure of the graph.
Baselines. We compare our proposed HGENA against the
following five NA baselines:

• IONE [5]: models the follower and followee relationships
of each user as the input and output context vectors. Then
the representations of nodes are used for multiple network
alignment.

• DeepLink [2]: users random walk and word2vec to cap-
ture the underlying network structures. The duality of
pair-networks models the patterns of cross-site analysis.

• GCN [17]: provides node representation learning through
spectral graph convolutional networks. In this study, we
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Fig. 4: Performance comparisons on Twitter-Foursquare with different (a) training ratio, (b) dimensions, and (c) precision@k.
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Fig. 5: Performance comparisons on Lastfm-Myspace with different (a) training ratio, (b) dimensions, and (c) precision@k.

use GCN to learn the embeddings for each node in paired
networks and then map the anchor nodes by comparing
their embedding vectors.

• Meta-NA [6]: considers NA problem as one-shot classi-
fication problem and conducts a graph meta-learning to
tackle the multi-network alignment task flexibly.

Note that we omit comparison with PERFECT model [18]
since we lack community labels of paired networks. All
deep learning based models are trained with Adam optimizer,
default embedding dimension is set to 60, and learning rate
is chosen from 10{−2,−3,−4,−5}. Other parameters for each
model follow the reported settings in corresponding paper.
Evaluation metrics. Recall that our primary goal is to retrieve
the latent anchor nodes in Gt for Gs. To evaluate the alignment
accuracy in line with the baseline models, we use a widely
used metric – Precision@k (P@k) – to assess the model
performance, which is defined as follows:

P@k =

n∑
i

1i{success@k}/n. (16)

Note that the higher the value, the better the performance.
Experimental Results. Now we discuss the experimental
observations, shown in Fig. 5. We compare HGENA to several
baseline approaches and study the influence of training data
ratio (left), embedding dimension (middle), and the value of

k (right). Overall, we can see that HGENA outperforms all
baselines consistently in all the settings on both datasets.

1) Performance on different training ratio: The training ra-
tio indicates the percentage of anchor nodes used for training.
As illustrated in Fig. 4(a) and Fig. 5(a), the performances of
all methods increase with the training data ratio. This result is
intuitive as more local structure semantics of anchor nodes are
utilized for training the models. Besides, our model requires
less training data than baselines since it embeds the network in
the hyperbolic space – which could better reflect the tree-liked
structure than in Euclidean space. On the other hand, previous
methods heavily rely on more anchor nodes to capture the
sub-graph patterns. However, anchor nodes are expensive in
real-world OSNs due to privacy protection policies. Labeling
anchor nodes needs domain knowledge, which restricts the
models relying on massive anchor nodes, let alone the label
noises that would further deteriorate the model performance
due to the introduced biases.

2) Performance on different embedding dimension: Ac-
cording to Fig. 4(b) and Fig. 5(b), we can observe that
all Euclidean embedding based methods perform worse than
HGENA when the embedding dimension is low. Because
the complexities of graph embedding algorithms are highly
dependent on spatial dimensions, the baselines rely on large
dimensions to represent the complex network structures in



the Euclidean space [21]. In contrast, HGENA requires fewer
dimensions since the number of nodes in a certain volume
increases exponentially with the radius, thereby encoding the
imbalanced node distribution information without embedding
distortion. This result also suggests that our approach is
scalable and more efficient in embedding and aligning larger-
scaled networks.

3) Performance on different precision@k: Fig. 4(c) and
Fig. 5(c) show the different values of parameter k on two
datasets. As we can see, previous network alignment ap-
proaches cannot effectively retrieve the anchor nodes when k
is small. Our model, in contrast, achieves better anchor node
ranking performance, because it explicitly encodes the latent
hierarchy of the networks, which, arguably, can better reflect
the local structures of anchor nodes.

Another observation is that the improvement on the dataset
Lastfm-Myspace with high δ-hyperbolicity is limited, com-
paring to the Twitter-Foursquare. This suggests the hyperbolic
space learning is more suited for the tree-like network struc-
ture, which indicates higher hyperbolicity (low δ). But for
small dimensions, HGENA is still more capable for anchor
node representation than GCN and any other Euclidean meth-
ods.

TABLE II: Influence of Curvature c

Variable c
Twitter-Foursquare Lastfm-MySpace
p@10 p@30 p@10 p@30

c = 0.5 0.51 0.64 0.60 0.68
c = 1.0 0.57 0.71 0.68 0.75
c = 10.0 0.48 0.62 0.69 0.78
c = 25.0 0.46 0.61 0.72 0.81

4) Effect of variable curvature: Curvature c is an essential
parameter of HGENA, as it measures how the embedding
space we learned deviates from the flat planes [21], [35],
and then determines the effect of hyperbolic space learning.
Table II shows how c influences HGENA on two datasets, indi-
cating that c would affect the model’s performance differently
in practice. For example, HGENA achieves the best perfor-
mance when c = 1.0 on Twitter-Foursquare and c = 25.0 on
Lastfm-MySpace, suggesting that the parameter c is highly
dependent on the network structures. Generally, a smaller
value is better for graphs exhibiting a stronger hierarchy.

V. CONCLUSION

We presented HGENA, a deep hyperbolic graph neural
network model for network alignment, catering to both struc-
tural properties and imbalanced node distributions in social
networks. We enabled embedding social networks and aligning
users across domains in the hyperbolic space. Providing an
alternative solution for network alignment beyond Euclidean
space embedding and node linking, HGENA may provide
foundation for studies that will capture more meaningful
structural patterns and complex node semantics. As our fu-
ture work, we are interested in exploiting rich node features
to improve alignment performance, and incorporating the

uncertainty [36]. In addition, we will extend the proposed
model to other graph-related tasks in social networks, such
as information cascade modeling and fake news detection.
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[25] M. Nickel and D. Kiela, “Poincaré embeddings for learning hierarchical
representations,” in NeurIPS, 2017, pp. 6338–6347.

[26] A. A. Ungar, “A gyrovector space approach to hyperbolic geometry,”
Synthesis Lectures on Mathematics and Statistics, vol. 1, no. 1, pp. 1–
194, 2008.

[27] Q. Liu, M. Nickel, and D. Kiela, “Hyperbolic graph neural networks,”
in NeurIPS, 2019, pp. 8230–8241.

[28] A. Lou, I. Katsman, Q. Jiang, S. J. Belongie, S.-N. Lim, and C. D. Sa,
“Differentiating through the fréchet mean,” in ICLR, 2020.
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