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a b s t r a c t

Quantifying and predicting the long-term impact of both scientific papers and individual authors
have important implications for many academic policy decisions, from identifying emerging trends
to assessing the merits of proposals for potential funding. This paper presents SI-HDGNN, a novel
heterogeneous dynamical graph neural network that explicitly models a heterogeneous, weighted,
directed and attributed academic graph, enabling a prediction of the cumulative scientific impact of
papers and authors by a specifically designed aggregation method. Unlike the existing feature-based
or homogeneous approaches, SI-HDGNN addresses the problem by capturing the temporal–structural
characteristics of the papers and authors as well as their complex interactions and long-term depen-
dencies. Extensive experiments conducted on three large-scale multidisciplinary academic datasets
demonstrate its superior performance in predicting the long-term scientific impact of both scientific
papers and authors.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The quantity and rate of scientific research publications have
xperienced a tremendous increase in recent years as can be
itnessed, for example, by the number of records in DBLP1 which
as doubled from 2,486,800 in 2013 to 5,401,295 in 2020. Sim-
larly, according to the AI index report 2021 [1], the number of
eer-reviewed AI publications grew by nearly 12 times between
000 and 2019. Quantifying the impact of articles, journals, con-
erences, institutions and individual researchers is an important
ask in many domains pertaining not only to the advancement of
cience but also to society in a broader sense [2]. For example,
unding agencies and research institutes need to not only have
deep understanding of the current research developments but
lso assess the potential (short- and) long-term impacts. More-
ver, identifying frontier ideas and breakthrough topics should go
and-in-hand with identifying productive scholars and improving
he search for well-fitted scientists for defined projects, as well as
efining the policies for hiring (and awarding) high-quality faculty
nd also for broader decision-making [3–6].
The availability of various scientific databases, such as Web

f Science, Google Scholar, DBLP, ScienceDirect, IEEE Xplore, and

∗ Corresponding author.
E-mail addresses: xovee@ieee.org (X. Xu), zhongting@uestc.edu.cn

T. Zhong), ce.lc@outlook.com (C. Li), gocet25@iastate.edu (G. Trajcevski),
an.zhou@uestc.edu.cn (F. Zhou).
1 https://dblp.uni-trier.de/statistics/recordsindblp.
ttps://doi.org/10.1016/j.knosys.2021.107839
950-7051/© 2021 Elsevier B.V. All rights reserved.
ACM DL provides an unprecedented opportunity to explore the
career of scientists and the dynamics of the evolving process of
paper dissemination. However, the scientific impacts of papers
and authors can be affected by a variety of factors, e.g., a prolific
researcher may publish a number of papers every year, but the
impact of their publications can vary significantly over time [7].
Additionally, some scientific findings may receive a burst of at-
tention immediately, while others may take decades to become
impactful [8].

Quantifying and foreseeing the impact of scientific diffusion
has been of interest to generations of researchers since the pio-
neering work in [9]. Earlier efforts [2,10–12] primarily focused
on extracting indicative features, designing effective stochastic
processes, and discovering the latent mechanisms that drive the
accumulation of citations. Scholar metrics, such as the number
of publications and citations, have been widely used to forecast
the future h-index [11]. Factors such as topical authority and
publication venue that may increase citations were utilized to
predict the scientific impact [13]. Temporal and structural fea-
tures of authors/publications – e.g., growth rate, recency, node
degrees, betweenness, community, etc. – have also been used
to improve the prediction performance [10,14]. Despite their
various merits, the existing works have limitations in predicting
the impact of scientific publications due to the confluence of
different, and sometimes, controversial factors [8,15] and the
difficulty of generalizing the knowledge from one discipline to

another. Conversely, some implicit but essential factors have not
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Fig. 1. Illustration of homogeneous and heterogeneous academic networks.

been fully leveraged – e.g., the academic authorities that amplify
author/paper exposure and facilitates grant funding.

Another line of research predicts the propagation of scientific
mpact from the perspective of stochastic dynamics, relying on
arious pattern recognition-based models [16–18]. These meth-
ds are theoretically solid and have demonstrated their inno-
ativeness, particularly for interpretability of the predictions —
owever, they require longer sequences of observations [15] and
ay still fail to fully integrate the rich semantic features and
xplore the complex interactions among authors and papers for
cientific impact prediction.
Recent applications of deep neural networks on graph data

ave inspired numerous models for capturing the temporal and
equential process of information diffusion [19], in which aca-
emic graphs (e.g., citation networks) are modeled for scientific
mpact prediction. An end-to-end graph embedding-based pre-
iction model was proposed in [20], which learns the representa-
ion of information cascade graphs with random walk paths, dif-
usion processes via recurrent neural networks (RNNs) [21], and
ttention mechanisms. CasCN [22] exploits the structure of each
itation cascade through a recurrent graph convolutional network
GCN) [23], and predicts the future size by taking the directional-
ty of the citation graph and time decay effects into account. How-
ver, these deep learning approaches deal with the representation
earning of homogeneous graphs, limiting their capability to ex-
loit the information associated with multiple node attributes
nd complex relationships in heterogeneous graph structures.
or example, in Fig. 1, a homogeneous graph consists of only
ne type of node and edge, while the heterogeneous graph can
andle multiple types and further encompass semantic informa-
ion representing the nodes and their interactions. We note that,
or compactness, in Fig. 1 (as well as in Fig. 2), we use doubly
rrowed edges to substitute a pair of edges between the adjacent
odes in the directed graph.
At the heart of the motivation for this study is the observation

hat properly incorporating all the meaningful relationships be-
ween various ‘‘nodes’’ and ‘‘edges’’ when capturing the diffusion
f scientific results and their impact is still not fully addressed. Al-
hough the existing methods in scientific impact prediction have
ained certain success, they face several important challenges:
1) Feature-based models explore various kinds of features ex-
racted from content, structure, time-series, and metadata from
apers, authors, and venues. Nevertheless, they rely on extensive
and-crafted feature engineering that cannot be generalized from
ne domain to another and are not easy to implement [24]
2) Pattern-based models make strong assumptions about the
nderlying diffusion mechanisms in the academic graph, which
2

is inapplicable to large-scale data that are full of uncertainties.
Also, they lack the guide of future popularity and thus perform
poorly [18]. (3) Deep learning-based approaches usually lack ef-
fective heterogeneous graph modeling and thus fail to capture the
complex dependencies and dynamic relations between different
types of entities, limiting their prediction performance [22,25].
On the other hand, traditional HIN-based models are short of
learning temporal dynamics between citations [26].

In this paper, we propose SI-HDGNN, an end-to-end prediction
model that quantifies long-term Scientific Impacts via a Hetero-
geneous Dynamical Graph Neural Network. It studies the dynamic
evolving process of scientific impact while capturing the rich
structures and semantics embedded in large-scale heterogeneous
academic graphs. SI-HDGNN bridges the gap between dynamical
GNNs [27,28] and heterogeneous information network (HIN) em-
bedding [29–32], which has largely been studied independently
in prior works. SI-HDGNN learns node representations with a
newly designed heterogeneous GNN that aggregates the neigh-
boring features of nodes with a fast weighted contextualized node
sampling strategy. In addition, SI-HDGNN is a temporal-attentive
representation network, preserving the unevenly distributed sci-
entific impact of nodes. It also captures the dynamic evolution
of nodes and the temporal dependencies among heterogeneous
entities by encoding temporal cascading information into node
representations, which sheds light on the underlying mechanism
that accumulates the impact for both papers and authors.

The main contributions of this work are threefold:

• We study the scientific impact prediction problem and
present a novel heterogeneous dynamical graph learning
framework, which allows us to capture richer and more
complex interactions between nodes and edges in a hetero-
geneous, weighted, directed and attributed academic graph,
without extensive feature engineering and special designs.
• The proposed SI-HDGNN model extends traditional HIN-

based models with a temporal horizon and efficiently ac-
quires knowledge from large-scale academic networks. It
learns the temporal aspects of nodes’ structural and se-
mantic properties and combines them for scientific impact
prediction. Furthermore, we specifically design a tempo-
ral aggregation module for effective author prediction by
splitting citations in different author publications.
• We conduct extensive evaluations on three large-scale mul-

tidisciplinary academic datasets with millions of nodes and
edges. The experimental results on two scientific impact
prediction tasks show that the proposed model is gen-
eral across domains and achieves significant improvements
over homogeneous graph-based information diffusion mod-
els and state-of-the-art HIN approaches.

For reproducibility, the source code and datasets used are
publicly available at https://github.com/celi52/si-hdgnn.

The rest of this paper is organized as follows. Section 2 re-
views the related literature and positions the contributions of
SI-HDGNN in that context. Section 3 introduces the preliminaries
of the scientific impact prediction problem and the necessary
background of heterogeneous academic graph. In Section 4, we
present the details of our solution for scientific impact prediction.
We report the experimental results, ablation study and qualita-
tive results, in Section 5. We conclude our work and point out
future directions in Section 6.

2. Related work

In this section, we review the up-to-date literature and discuss
their relations to our proposed SI-HDGNN model.

https://github.com/celi52/si-hdgnn
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.1. Scientific impact prediction

The goal of scientific impact prediction is to quantify the po-
ential influence of academic publications, institutions and schol-
rs (e.g., the number of citations, h-index of authors [33], im-
act factors of venues [34]). Predicting the long-term impact
f individuals can be challenging since many factors/covariates
nfluence the final scientific impact, even when they have similar
nitial developments [17].

Feature engineering methods explore various kinds of related
eatures with respect to authors/papers/venues. Some examples
re:

• temporal features, such as the publication date and citation
growth speed.
• structural features, such as node degree, page-rank [35],

betweenness/closeness centralities, importance score and
communities [14] in the academic network; content features
extracted from both linguistic and visual sources such as
paper title, abstract, figures/tables, author biographies.
• metadata of the scholars/publications including age, gen-

der, collaborators, number of published papers, number of
author citations, h-index, research disciplines/interests, etc.

Certain complex features have also been designed to improve
he prediction performance such as latent Dirichlet allocation
LDA) for topic modeling [36], as well as popularity, novelty,
iversity, links & weights [37,38] and authority of papers [39].
nce the feature set is defined and extracted, they are fed into
iscriminative machine learning algorithms for training and eval-
ation by the model. Such models include but are not limited
o linear regression, support vector machine (SVM), multi-layer
erceptron (MLP), XGBoost [40], etc. Feature-based models –
ith carefully selected feature groups – generally perform well
nd are easy to implement and interpret. Nevertheless, selecting
nd designing good-performing features can be tricky, and heavy
eature engineering and expert domain knowledge are often re-
uired. In addition, features designed for one scenario may not
e transferable to another, as generalization capability is lacking.
ur SI-HDGNN is an end-to-end data-driven model that directly
earns heterogeneous structures and dynamic impact evolution in
large-scale academic graph for scientific impact prediction.
Another set of methods explores the underlying mechanisms

hat drive scientific publications to disseminate and harvest ci-
ations. Statistical methods and stochastic point processes have
een introduced to model the arrival process of citations, such
s reinforced Poisson processes [16], self-exciting Hawkes pro-
esses [41–43], and their combinations [17,18,44–46]. These
ethods treat the prediction process in a generative way by first
bserving a small group of early adopters and then simulating
he diffusion process using deterministic stochastic models. In
ddition, this line of studies is built on a range of specified
echanisms governing information propagation, e.g., attractive-
ess of items, aging effect, second acts [2] and rich-get-richer
henomenon [16,19], which have been extensively adopted in
odeling general information diffusion such as microblogs [42,
7] and scientific publications [17]. Although such methods have
ained success in certain contexts, they are often limited to
he determined processes and hard to integrate with the in-
ernal/external factors that influence the final scientific impact.
ost importantly, they lack flexibility and generalizability that
re desirable for large-scale scientific data learning. In contrast,
I-HDGNN is a general graph-based framework without a special
ropagation mechanism assumption. Therefore, various semantic
eatures (e.g., texts and figures) can be easily and simultaneously
tilized to learn expressive representations of nodes in the graph
ith any state-of-the-art representation learning models.
3

Recently, studies have used various deep learning techniques
for modeling and forecasting scientific impact. Such models do
not require special assumptions regarding paper diffusion mech-
anisms and can be trained in an end-to-end manner. Existing
deep models can be classified into three main categories: (i)
Most approaches address the content of scientific articles such
as titles, abstracts, keywords, and reviews [48,49] by applying
natural language processing (NLP) techniques including LDA [36],
word2vec [50], and transformers [51]. These studies rely on the
information available at the time of publication and the charac-
teristics of individual articles. (ii) Researchers have also studied
the post-publication information, e.g., early citation count, cita-
tion sequence and citation graph. Temporal and structural data
can be well characterized by deep learning approaches such as
recurrent neural networks and graph neural networks [25,52–
55]. Notably, these models resort to peeking the early evolving
trend of an article’s citations for its future impact prediction. (iii)
Historical information such as published articles, past success,
collaborator, and communities can be vital for forecasting the fu-
ture. Such information can be used to construct a global academic
network. Taking DeepCas [20] as an example, the global net-
work contains citation relationships (edges) between researchers
(nodes). Since the global structures imply the influence, reputa-
tion and/or preference of nodes in the graph, they are beneficial
to scientific impact prediction.

SI-HDGNN can be seen as a novel framework consisting of the
aforementioned three main elements: (i) it uses paper texts as
content features; (ii) it includes an RNN-based temporal aggrega-
tion module for citation sequence modeling; and (iii) the global
graph is modeled by specifically tailored heterogeneous dynami-
cal graph neural networks. Although previously proposed graph-
based deep models have adopted graph attention networks [56],
temporal graph neural networks [57], or graph convolution net-
works [22] for graph learning and information cascade modeling,
most of them (if not all) only consider homogeneous graphs
and/or ignore content features.

2.2. Heterogeneous graph representation learning

The homogeneous network (graph) assumes that the type
of node or edge is unique, e.g., the author collaboration net-
work and the friendship network contain only one type of nodes
and edges. Due to this distinct pattern, for complex network
interactions, most homogeneous information networks simply
ignore the heterogeneity of nodes and edges or convert different
types of nodes and edges to the same type (cf. Fig. 1). To fuse
complex relationships/interactions, which are implied in hetero-
geneous graphs, many heterogeneous information network (HIN)
embedding models have been proposed in recent years. Learn-
ing expressive graph representations is essential for HIN down-
stream tasks. Interested readers are referred to comprehensive
HIN surveys [58–62].

In general, heterogeneous graph representation learning can
be categorized as proximity-preserving and message-passing al-
gorithms. Proximity-preserving methods are largely dependent
on network topology engineering, for which paradigms such as
random walks [63] and first/second-order proximity [64] have
been employed [65,66]. For example, the nodes traversed by
meta-path guided random walks are used in metapath2vec [65]
to model the context of nodes in the heterogeneous graph.
HIN2vec [66] directly considers meta-paths as objects/contexts
to learn the embeddings for both nodes and meta-paths. Various
HIN studies exploit heterogeneous contexts for learning represen-
tations by meta-paths and often work with a two-step strategy.
First, they perform random walks on the heterogeneous graph to
collect node contexts. Then, the skip-gram algorithm is usually
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Table 1
Major symbols and definitions.
Symbol Definition

P, A, V Entity class of paper, author and venue
p, a, v Instance of paper, author and venue
N , M # of papers and authors in the dataset

t0, tob, tpd Timestamp of first publication, observation, and prediction
pi,C (t0, tk), ai,C (t0, tk) Sorted citation set of paper pi and author ai over time interval [to, tk], the

Subscript C denotes Citation set
ctkpi , c

tk
ai Cardinality of pi,C (t0, tk) and ai,C (t0, tk) (the number of citations for pi and ai

from time t0 to tk )

GAP = (V, E,A,R, CV ) Academic heterogeneous graph GAP with nodeset V , edgeset E ,
Node type set A, edge type set R, and node features CV

An , Re Type of node for n ∈ V , and type of edge for e ∈ E
N (n) Set of node n’s neighbors
Sp(n),Sa(n),Sv(n) Sampled n’s neighbors for three types: paper, author, and venue
w
y
t
p
s
a
d
(

(
n
c
w

‘
i
b

utilized to generate the node embedding by predicting its context
nodes given the meta-paths.

Motivated by the success of graph neural networks (GNNs),
any researchers have recently adapted them to facilitate the
essage-passing process in heterogeneous graphs [29,67–71].
heterogeneous personalized spacey random walk and a scal-

ble HIN embedding algorithm (SpaceyMetapath) to attain the
xpected stationary distribution among nodes were presented
n [67]. HAN [68] leverages node-level attention and semantic-
evel attention to discriminate the importance of nodes and meta-
aths. HetGNN [29] exploits representation learning from both
raph structural heterogeneity and node content heterogeneity.
nspired by transformer [51], node- and edge-type dependent
arameters are designed to characterize the heterogeneous at-
ention over each edge in HGT [69]. An investigation of heteroge-
eous representation by jointly performing graph structure learn-
ng and GNN parameter learning was presented in [70]. Unlike
he aforementioned HIN models, which are only applicable for
tatic graphs, our proposed SI-HDGNN is a dynamic GNN model,
apable of capturing the evolving structures of heterogeneous
raphs. In addition, SI-HDGNN includes a fast weighted contex-
ualized node sampling strategy and an attentive representation
etwork, which can learn better heterogeneous knowledge in a
arge-scale academic network and facilitate subsequent temporal
itation sequence learning.
In sum, notwithstanding the existing (works and) results on

cientific impact prediction, dynamic graph learning, and het-
rogeneous graph neural networks — to our knowledge, few
tudies have addressed the scientific impact prediction problem
y modeling heterogeneous dynamic graph neural networks.

. Preliminaries

We now introduce the basic terminology and formally define
he problem(s) addressed in this paper. We note that, for conve-
ience, a list of symbols introduced (and used) throughout the
aper, and their concise definitions, are provided in Table 1.
We consider three basic entity classes, an example of which is

rovided next. We note that here, we first describe the attributes
f the instances of each entity class in a broader manner, for the
ake of developing intuition. A detailed list of the (sources of the)
ata items and attributes is provided in Section 5.

• Publications: P = {p1, p2, . . . , p|P|}, where P is the entity
class of publication, and |P| represents the number of publi-
cation instances. Each instance pi ∈ P consists of attributes
such as ID, paper title, authors, venue, year, reference, etc.
We note that whenever there is no ambiguity, we will use
‘‘publications’’ and ‘‘papers’’ interchangeably. The attribute
ID is a unique identifier (e.g., similar to the DOI number used
in bibliographic nomenclature).
4

• Authors: A = {a1, a2, . . . , a|A|}, where A is the entity class
of the author, and |A| represents the number of author
instances. Each instance ai ∈ A also has its collection of
attributes such as ID, name, affiliation, title, etc. The attribute
ID is, once again, a unique identifier for each author, similar
to the ORCID (Open Research and Contributor ID2) number.
• Venues: V = {v1, v2, . . . , v|V |}, where V is the entity class

of venue, and |V | represents the number of venue instances.
We assume a unique ID such as ISSN (International Standard
Serial Number) or DOI, along with additional attributes such
as type (e.g., ‘‘conference’’ or ‘‘journal’’), name, year, month,
volume, etc. We note that, depending on the type, some
values may be missing – e.g., when type = ‘‘conference’’, the
proceedings will not have values for volume, number, etc.

To assess the value of a particular attribute for a given object,
e use the standard ‘‘.’’ notation. For example, the publication
ear of a particular paper is denoted as pi.year . We reiterate that
he details of the actual attributes used in the evaluation are
rovided in Section 5 – and we note that not all the possible
ources have the same set of attributes (values). However, we
ssume, in the rest of this paper, that it is always possible to
isambiguate two instances (e.g., if there is no ORCID value, then
name, affiliation) can serve for disambiguation among authors).

What is relevant at this point is that, given three such sets
i.e., entity classes), we proceed with constructing the heteroge-
eous graph of academic publications GAP = (V, E) (cf. Fig. 1). To
apture the heterogeneity, a given graph GAP is also associated
ith mappings (A and R) where:

1. A denotes the type of vertex for the members of V . Specifi-
cally, for each n ∈ V , its type An can be (exclusively) either
the ’author’, ’paper’, or ’venue’.

2. R denotes the types of directed edges between vertices,
which are dependent on the (types of) adjacent vertices
that they are connected. Specifically, we consider seven
different kinds of edges:
– author writes paper,
– author collaborates with author,
– author publishes in venue,
– author cites paper,
– paper is published in venue,
– paper cites paper, and
– paper cites author(s)

We can see that each type in R denotes a particular kind of
‘social relationship’’ in the world of academic publications. Sim-
lar to actual social networks, there can be different correlation
ehaviors between (pairs of) members. As a specific example, in

2 https://orcid.org/.

https://orcid.org/
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nformation cascades [19], a given user may have a tendency to
etweet items from another particular user more often. Similar
henomena are possible in our ‘‘social network’’ represented by
AP ; a particular author may cite a particular paper multiple times
> 1) in his publications; a particular paper may cite multiple
apers (> 1) of the same author; etc. To properly capture this
ifferential affinity, we take the frequency of each behavior into
onsideration. Specifically, for the directed, weighted, and type-
ware edge e = (ni, nj,Re) between node ni and nj where e ∈ E ,
nd edge type Re ∈ {collaborates, publishes, cites} the attribute
eight of e, denoted W (e), reflects the amount of times that a
istinct instance of such an edge has occurred. We implicitly
ssume that whenever there is a single occurrence of (an instance
f) a particular edge, its weight is 1.
Last, given GAP and its associated A and R, we use CV to

enote the vector of features of the vertices. In addition to internal
eatures (e.g., title, year), we include (a subset of the) graph
opological structure for vertices. For each n of a type ’paper’
i.e., An = ’paper), we use a pre-trained BERT model and
ert-as-service [72,73] to obtain the representation of its title.
eepWalk is leveraged to obtain the pre-trained node structural
mbeddings of ’author’, ‘paper’ and ’venue’ types of ver-
ices in GAP . For compactness, when appropriate, we will denote
AP as a quintuple (V, E,A,R, CV ).
For each paper (resp. author), let t0 indicate the time (i.e., year)

f its respective first publication. Clearly, for a given set of N
apers, during an observation window [t0, tob], each paper can be
ited by multiple other papers, and at different time instances.
hus, for a given paper pi, and a time instance tk (t0 ≤ tk), the

sorted set of its citations over [t0, tk] can be represented as a col-
lection of pairs pi,C (t0, tk) = {(pj, t)|pj cites pi ∈ E, at time t (t0 ≤
≤ tk)}. Then, we use ctkpi to denote the cardinality of pi,C (t0, tk)
i.e., the number of citations for pi by other papers from time t0

o tk.
In a similar spirit, we can use ctkai to denote the number of ci-

ations that author ai received by various papers at time instance
k. We note that this value is further discussed in Section 4.3.

We now define the scientific impact prediction for papers and
uthors, respectively, as follows:

efinition 1 (Scientific impact prediction for papers (SIPP)). For
given paper pi and the corresponding collection of citations
etween the publication time t0 and a given observation time
ob (i.e., pi,C (t0, tob)) for pi, the scientific impact prediction problem
f pi aims to provide a (predicted) value of its total number of
itations c

tpd
pi at some future prediction timestamp tpd(> tob).

efinition 2 (Scientific impact prediction for authors (SIPA)). For
given author ai and the corresponding collection of papers co-
uthored by ai between time t0 (its first publication) and a given
bservation time tob, the scientific impact prediction problem for
i aims to provide a (predicted) value of the total number of
ited articles c

tpd
ai co-authored by ai at some (future) prediction-

imestamp tpd(> tob).

Then, assuming that the exact number of citations at time
pd is c

tpd
pi , the SIPP problem (cf. Definition 1) can be solved by

ptimizing the following mean squared logarithmic error (MSLE),

⟨SIPP⟩
=

1
N

N∑
i=1

(
log ĉ

tpd
pi − log c

tpd
pi

)2
, (1)

here ĉ
tpd
pi is the predicted number of citations, c

tpd
pi is the ground

ruth, and N is the number of papers. Here, we use the logarithm
o make the loss function care only about the relative difference
etween the true and predicted value.
5

In a similar spirit, the SIPA problem (cf. Definition 2) can be
olved by

⟨SIPA⟩
=

1
M

M∑
i=1

(
log ĉ

tpd
ai − log c

tpd
ai

)2
, (2)

here ĉ
tpd
ai is the predicted number of citations for author ai, c

tpd
ai

s the ground truth, and M is the number of authors.

. Model

In this section, we present the details of our SI-HDGNN model.
rom a global perspective, it consists of two main building blocks:
i) heterogeneous graph representation learning via deep neu-
al networks and (ii) temporal citation sequence modeling and
uthor aggregation via recurrent neural networks.

.1. Heterogeneous graph building and representation learning

Fig. 2 shows the first part of SI-HDGNN, which is used to
earn heterogeneous representations of nodes in academic graph
AP . Specifically, for a node in GAP – given its heterogeneous
eighbors in a non-Euclidean graph structure – we learn a low-
imensional node embedding, in which the learned embedding
reserves heterogeneous neighboring proximity in a continuous
pace. Toward that, we use a random walk with restart [74] and
deep neural network architecture from [29] as the backbone.
e design a heterogeneous neighboring node sampling strategy

nd a multi-head attention based neighboring node aggregation
odule to enhance heterogeneous node representation learning.

.1.1. Heterogeneous neighboring node sampling
The main aspects of traditional random walk-based mod-

ls are that they: (i) depend on homogeneous citation cascade
raphs [20,22], which ignores rich interactions among hetero-
eneous neighbors; (ii) neglect to consider node impact in the
ontext of multiple weighted node/edge relations [29]; or (iii)
eavily rely on user-specified meta-paths [6,65]. Given a node
(paper/author/venue) in academic graph GAP , the distribution
f its neighboring nodes is often highly skewed, i.e., some nodes
onnect to a large number of other nodes (those highly cited
apers/authors, prestigious venues, etc.). However, most of them
ave only a few neighbors, intensely following the heavy-tailed
istribution of citations [3,10]. We note that modeling of multiple
ypes of nodes/edges and their complex interactions was often
nderexplored in previous studies.
To accommodate these factors, we design a weighted con-

extualized node selection strategy, which is more suitable for
apturing the scientific impact and imbalanced distribution of
odes in a heterogeneous academic graph. Specifically, for each
urrent step, a given node n either returns to the previous node
ith probability q, or jumps to the next neighbor node with
robability 1− q. Let N (n) be the set of n’s neighbors, then node
has a probability 1− q to select one of its neighbors N (n). The
eighboring environment of node n contains multiple node types
, multiple edge types R and different node/edge characteristics.
o take all these factors into consideration and ensure that each
ype of neighbor for the target node could be chosen, we design
type-based node sampling strategy – the probability of walking
o the next node m from n – defined as

Pr(m|N (n), GAP ) =

⎧⎨⎩
(1− q)αDα(n,m), if Am is paper
(1− q)βDβ (n,m), if Am is author
(1− q)γDγ (n,m), if Am is venue

(3)

here α, β, γ are the weight parameters that define the prob-
bility when ’paper’, ’author’, and ’venue’ are chosen as
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Fig. 2. The architecture of heterogeneous representation learning. (A): walk heterogeneous nodes using a specifically designed weighted contextualized node selection
strategy based on random walk with restart; (B): aggregate multi-modal node features with Bi-RNNs aggregator; and (C): aggregating heterogeneous neighbors of
notes with type-based multi-head attention mechanism.
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the next node. Dα(∗),Dβ (∗),Dγ (∗) are functions measuring node
influence from various factors. In this study, we use the node in-
degree to represent the importance of a node in its neighborhood
and we combine it with the weight of the corresponding edge e.
he function Dα(n,m) is defined as:

Dα(n,m) =

∑
ei∈En,m

W (ei) log(fin−degree(m)+ 1)∑
vj∈Nα (n)

∑
ej∈Eα

n,vj
W (ej) log(fin−degree(vj)+ 1)

(4)

where En,m is the set of edges from node n to m, and fin−degree(m)
s the in-degree value of node m in the graph GAP . We use the
alue of the logarithm of the in-degree to avoid the weight being
trongly dominated by high-in-degree nodes. We note that the
actors are not limited to the in-degree and edge weights. Other
eatures, e.g., arrival time, pagerank scores and similarities, can
lso participate in the function for measuring the neighborhood
nfluence — which is deferred to our future work.

Through running random walks iteratively, we can sample
fixed number of nodes for each node type in A, resulting in

hree sets for papers, authors, and venues denoted as Sp(n), Sa(n),
nd Sv(n). Note that we consider edge directions, weights, and
ode degrees when sampling heterogeneous neighbors. By doing
o, the most representative neighbors are sampled simultane-
usly with respect to multiple important factors designed by the
nfluence function D(∗).

.1.2. Aggregating node features
After sampling the neighbors for each node, we utilize bidi-

ectional gated recurrent units (Bi-GRUs) [21] to capture the
ependencies among the nodes’ content features. Assuming that
here are k content features for one specific type of node, the
eature aggregation can be formalized as

(n) =
1
k

k∑
i=1

(
−−→
GRU(hi

n) ||
←−−
GRU(hi

n)
)

, (5)

hi
n = MLP(Ci

n), for i = 1, 2, . . . , k, (6)

here F(n) ∈ Rdn is the aggregated embedding of node n com-
uted by mean pooling; ∥ denotes the concatenation operation;
i
n is the ith type of content feature of node n; hi

n ∈ Rdh is the
utput of the MLP. In practical applications, various content fea-
ures can be used here to enhance the model’s learning ability –
.g., meta-data and the text of papers (title, abstract, main body),
llustrations (figure, table), past publications of authors/venues,
etadata of authors/venues (profile, honor, research area, collab-
rators), etc. The bidirectional recurrent neural networks used
ere serve as a content feature aggregator and, as shown in
he experiments (cf. Table 4 in Section 5), have superior perfor-
ance compared to other aggregators, such as concatenation and

ax/sum pooling.

6

4.1.3. Aggregating heterogeneous neighbors
After aggregating the node content features, for each node

n in graph GAP , we have its corresponding aggregated features
F(n). Then we are ready to use a type-based RNN to aggregate
mbeddings of the neighbors in S(n). For each node type in
(in our case, the paper, author, and venue), Sp/a/v(n) is the

homogeneous type-specific neighboring set of a given node n,
and RNNp/a/v is a type-specific aggregator. More specifically, SI-
HDGNN utilizes another Bi-GRU for modeling n’s neighbors. We
take the paper neighboring aggregation as an example,

Fp(Sp(n)) =

∑|Sp(n)|
i=1

(
−−→
GRU(F(i)) ∥

←−−
GRU(F(i))

)
|Sp(n)|

, (7)

where |Sp(n)| is the number of node n’s paper-type neighbors,
p(Sp(n)) ∈ Rds is the output embedding from the homogeneous
eighboring set Sp(n), and ds is the dimension of the aggregated
eighboring embeddings of node n.
In SI-HDGNN we use deterministic neural networks, bidirec-

ional RNNs, and mean pooling as aggregators of the node content
long with node neighbors. Alternatively, other types of aggrega-
ors can also be used [29,75], e.g., the last hidden state of RNNs,
NNs, max or sum pooling.

.1.4. Multi-head attention for type-based neighbors
With each type-based neighboring aggregators in hand, we

an combine them using multi-head attention mechanism [76]
o learn the importance of each type-based neighbors,

i =
exp

(
LeakyReLU(uT

[F(n) ∥ FSi )]
)∑

j∈S′(n) exp
(
LeakyReLU(uT [F(n) ∥ FSj ])

) , (8)

′(n) = F(n) ∪ {FSj }j∈S(n), (9)

(n) =
1
K

K∑
i=1

∑
Fi(n)∈S′(n)

αiFi(n), (10)

where E(n) ∈ RdE is the learned embedding of node n, LeakyReLU
is the activation function, exp is the exponential function, u is
the attention parameter, and K is the number of attention heads.
Here, F(n) and FSj = FAj (SAj ) are computed by Eqs. (5) and (7),
espectively.

.2. Scientific impact prediction for papers

The second part of SI-HDGNN aims to model the cascading
ehavior of papers/authors. Here, we consider each paper pi as
n independent entity. Recall that t0 is the first publication time,
ob is the observation time, and pi,C (t0, tob) = {(pj, t)|pj cites pi ∈
E, at time t (t0 ≤ t ≤ tob)} is the sorted set of pi’s citations
ublished by time during the observation window [t0, tob]. Since

we already obtained the embeddings of papers E(p), authors E(a),
and venues E(v) (cf. Eq. (10)), we now separately model authors
of a paper and the paper itself by feeding them into RNNs. Fig. 3
shows the process of scientific impact prediction for papers.
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Fig. 3. Temporal prediction module for paper scientific impact. E(a), E(p), E(v)
are embeddings of authors, papers, and venues, respectively. We first utilize a
vanilla RNN to aggregate the author embeddings and use the last hidden state
as the final author embedding ha

p . Then we concatenate author, paper, venue
embeddings as the representation of paper p. The sequence of citation papers
as well as the original paper are fed into bidirectional RNNs for final scientific
impact prediction.

Fig. 4. Percentile of (left) number of authors per paper and (right) number of
citations per paper in APS, DBLP, and ACM datasets.

4.2.1. Multi-author aggregation layer
Note that each citation paper as well as the original paper

ay contain multiple authors. For example, in the APS dataset
he mean number of authors per paper is 3.438, and the maxi-
um number is 25 — and the distribution of author and citation
uantity per paper is shown in Fig. 4. We sequentially pipeline
he author embeddings into a GRU and then use the last hidden
tate ha

p as the representation of p’s authors.

.2.2. Sequential citation aggregation layer
After author aggregation, for each paper p, we have its own

mbedding E(p), the corresponding venue embedding E(v), and
he aggregated author embedding E(a) = ha

p. We then use a two-
ayer Bi-GRU to sequentially aggregate the citing papers ordered
y their publishing time t , where each citing paper pj is modeled
s the combination (by concatenation) of paper, authors, and
enue embeddings. The rationalè is that we expect to capture
emporal dependencies among citing papers in both the forward
nd backward directions, which, as we will show in Section 5.6,
s superior to other aggregators such as sum or max pooling [75].
he overall architecture of the citation aggregation is

(pj) = (E(pj)∥E(aj)∥E(vj)), (11)

h1
j = (
−−→
GRU(E(pj)) ∥

←−−
GRU(E(pj))), (12)

h2
j = (
−−→
GRU(h1

j ) ∥
←−−
GRU(h1

j )), (13)

here h2
j ∈ Rdh2 is the jth hidden state of the second layer of

i-GRU. Here, we concatenate the last hidden states of Bi-GRU as
he final output representation of paper pj and then make use of
t to predict its future scientific impact.

.3. Scientific impact prediction for authors

We now turn to the scenario of predicting the scientific impact
or authors. One straightforward way is to rank all citations of one
uthor (i.e., ai,C (t0, tob) = {(pj, t)|pj cites ai ∈ E, at time t (t0 ≤
≤ tob)}) during the observation window into a long sequence or-
ered by citing time and then directly feed the citation sequence
 g

7

Fig. 5. Temporal prediction module for author scientific impact. Different from
paper prediction which only needs one long citation sequence, we designed a
new approach for author prediction by splitting the citation sequence into mul-
tiple citation paths grouped by author publications ai,P (t0, tob). E(a), E(p), E(v)
re embeddings of authors, papers, and venues, respectively. First, the author
equence of each citing paper are fed into a vanilla RNN to obtain the author
mbedding ha

p . Then for each publication pj of author during observation
indow, pj,C (t0, tob) is the citation sequence of pj . A citation-level RNN is used
o aggregate each publication pj ’s citations. A career-level Bi-RNN is used to
ggregate all of the observed publication impacts of author for final scientific
mpact prediction.

nto RNNs, just as we did in the paper prediction. The simple
odule is expected to learn the temporal dependencies among

he citations of all the authors’ observed publications. However,
his assumption can be problematic since all the citations during
he observation window may come from distinct publications
e.g., the author may have several different research interests).
hese citations may not be highly correlated. Another obstacle is
hat a single sequence of citations is too long to efficiently cap-
ure the long-term temporal dependencies due to the vanishing
radient problem of RNNs [77].
To address this, we opt to split citations into multiple citation

aths grouped by author publications. We note that t0 is the
ublication time of author a’s first publication, and tob is the
bservation time. And let ai,P (t0, tob) = {(pj, t)|ai writes pj ∈
, at time t (t0 ≤ t ≤ tob)} be the set of ai’s publication set
rdered by publication time t during the observation window
t0, tob]. The architecture of the ‘‘scientific impact prediction for
uthors’’ framework is shown in Fig. 5. We discuss different
uthor prediction approaches and compare their performances in
ection 5.7.

.3.1. Multi-author and sequential citation aggregation
Note that each paper p may contain multiple authors. We se-

uentially pipeline authors’ embeddings into a GRU and then use
he last hidden state ha

p as the representation of their embedding.
hen, for each paper, we have its own paper embedding E(p),
he corresponding venue embedding E(v), and the aggregated
uthor embedding E(a) = ha

p. We concatenate the three types
f embeddings to represent this paper,

(p) = (E(p)∥E(a)∥E(v)). (14)

For each publication pj, we can obtain its citation set pj,C (t0,
ob) during ai’s observation window. Then, we use a citation-level
NN to sequentially aggregate the citations of paper pj ordered
y their publishing time t and utilize the last hidden state hpj as
he representation of pj’s citation papers.

.3.2. Sequential publication aggregation
After multi-author and citation aggregation, for each author’s

ublication pj, we have its citation embedding E(pj) = hpj .
e then use a two-layer Bi-GRU network to sequentially ag-

regate the publication papers ordered by their publication time
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. We expect to capture temporal dependencies among author’s
ublications,

1
j = (
−−→
GRU(E(pj)) ∥

←−−
GRU(E(pj))), (15)

2
j = (
−−→
GRU(h1

j ) ∥
←−−
GRU(h1

j )), (16)

here h2
j ∈ Rdh2 is the jth hidden state of the second layer of

i-GRU. Here we concatenate the last hidden states of Bi-GRU as
he final output representation of the author and then use it to
ake the author scientific impact prediction.
Compared to the paper prediction approach, which aggregates

ll the citations in a single sequence, author prediction con-
iders individual impacts of the author’s publications and then
ggregates all the publication impacts using Bi-RNNs.

.4. Objective

For unsupervised heterogeneous graph representation learn-
ng, we optimize the model weights without any node labels
hrough negative sampling [78]:

1(Θ1) =
∑

⟨u,v,v′⟩∈Striple

log σ (E(u) · E(v))

+ log σ (−E(u) · E(v′)),
(17)

where Striple is the set of triplets ⟨u, v, v′⟩, σ (·) is the sigmoid
function and E(·) is the learned node embedding. We choose the
positive node v for the target node u by its context information
hrough heterogeneous neighboring node sampling. For the neg-
tive node v′ of each v, we randomly sample it from the whole
ode set V with node type A(v). The objective is to pull the
ositive node v close to the target node u while pushing negative
ode v′ away from u. Then, the close-far pattern is learned with

the discriminator, and the neighboring information of node u is
preserved in the embedding space.

Algorithm 1: Heterogeneous Graph representation learning
input : preprocessed nodes features CV ,

triplets set Striple sampled from heterogeneous
neighboring random walk and negative sampling
output: node embedding E(n),

optimized model Θ1
1 for epoch = 1 . . . max_epoch do
2 for batch in Striple do
3 Aggregate node content features for all nodes n ∈ V with

Bi-GRUs via Eq. (5);
4 Aggregate the heterogeneous neighbors Sp/a/v for

(u, v, v′) Eq. (7);
5 Multiple types aggregation with attention by Eq. (10);
6 Obtain (E(u), E(v), E(v′));
7 Update model parameters Θ1 by Eq. (17);
8 end
9 end

Algorithm 1 summarizes the procedure of heterogeneous
raph representation learning.
For SIPP, the output of SI-HDGNN is the predicted citation

ount c
tpd
p of paper p at prediction time tpd. We use two-layer

f MLPs as the impact predictor. Thus, the impact prediction is
efined as

⟨SIPP⟩
2 (Θ2) =

1
NT

NT∑
i=1

(log ĉ
tpd
pi − log c

tpd
pi )2, (18)

here NT is the number of training samples, and ĉ
tpd
pi is the

redicted number of citations of paper p .
i
8

For SIPA, the general training process is similar, except that
q. (18) is alternatively defined as: L⟨SIPA⟩3 (Θ3) = 1

MT

∑MT
i=1(log

ĉ
tpd
ai − log c

tpd
ai )2, where ĉ

tpd
ai is the predicted number of citations

or author ai and MT is the number of training samples.
Algorithm 2 outlines impact prediction procedure.

Algorithm 2: Impact prediction
input : Node embedding E(a), E(p) and E(v),

observed p_cite_seq pi,C (t0, tob),
observed a_pub_seq ai,P (t0, tob),
observer pub_cite_seq pj,C (t0, tob),
tpd years citation groundtruth c

tpd
p/a

output: Predicted impact ĉ
tpd
p/a

1 ============Paper Prediction============
2 while not converged do
3 for pj in pi,C (t0, tob) do
4 Calculate ha

pj for pj with GRU;
5 Combine a/p/v embedding E(pj) = (E(pj)||E(aj)||E(vj));
6 end
7 Pipeline citing papers’ embedding sequence into Bi-GRU via

Eqs. (12) and (13);
8 Feed h2 into two-layer MLPs for prediction;
9 Update the parameters Θ2

0 end
1 ============Author Prediction===========
2 while not converged do

13 for pj in ai,P (t0, tob) do
14 for pk in pj,C (t0, tob) do
15 Calculate ha

pk for pk with GRU;
16 Combine a/p/v embedding

E(pk) = (E(pk)||(E(ak)||E(vk)));
17 end
18 Pipeline citing papers into Bi-GRU;
19 Obtain publication embedding E(pj);
20 end
21 Pipeline publication embedding sequence into Bi-GRU via

Eqs. (15) and (16);
22 Feed h2 into two-layer MLPs for prediction;
23 Update the parameters Θ3;
4 end

4.5. Complexity analysis

We close this section with an analysis of the complexity of
SI-HDGNN and a brief quantitative overview.

First, we note that from the perspective of static time com-
plexity analysis, SI-HDGNN consists of two main parts: (a) hetero-
geneous neighboring node sampling and (b) node representation
learning and scientific impact prediction.
• Complexity for heterogeneous neighboring node sampling. The

irst part is the transformation of random walk with restart. Its
omplexity is polynomial with the number of nodes in the neigh-
orhood of each node, which requires O(|V|3) time complexity –
V| denotes the number of nodes in the heterogeneous graph. This
rocedure generates the contextual information of the sampled
odes and is saved for the heterogeneous representation learning.
• Complexity for node representation learning and scientific im-

act prediction. The computational complexity of the bidirectional
etwork is O(2∗(4IH+4H2

+3H+HK )), where I is the number of
inputs, K is the number of outputs, and H is the number of cells
in the hidden layer. The time complexity for the recurrent neural
network per weight is O(1).

Second, from a quantitative perspective: we obtain the total
number of weights by summing the number of elements for every
parameter group with the supported TensorFlow API. Then SI-
HDGNN has ∼604 K parameters for the representation learning
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Table 2
Statistics of three multi-disciplinary academic datasets.
Dataset APS DBLP ACM

# nodes 483, 294 1, 920, 499 2, 266, 733
# edges 26, 828, 252 71, 850, 966 39, 480, 147

Heterogeneous nodes in graph:
# papers 290, 836 1, 161, 820 1, 187, 613
# authors 192, 448 755, 084 887, 974
# venues 10 3, 595 191, 146

Heterogeneous edges in graph:
author writes paper 856, 206 3, 133, 355 2, 602, 722
author collaborates with author 1, 875, 081 5, 085, 689 3, 981, 389
author publishes in venue 276, 744 2, 092, 398 2, 178, 002
author cites paper 5, 796, 482 13, 637, 387 6, 459, 257
paper cites paper 2, 482, 448 6, 757, 586 3, 087, 459
paper cites author 5, 824, 483 15, 292, 583 6, 646, 654
paper published in venue 290, 836 1, 161, 820 1, 187, 613

Selected citation sequence in dataset:
# paper citation sequence 2, 874 19, 591 7, 754
# author citation sequence 2, 320 12, 093 6, 517
Table 3
Detailed information for one paper entity.
Items Description Example

#∗ Paper title #∗ Information geometry of U-Boost and Bregman divergence
#@ Authors #@Noboru Murata,Takashi Takenouchi,Takafumi Kanamori,Shinto Eguchi
#t Year #t 2004
#c Publication venue #c Neural Computation
#index Paper index id #index 436405
#% Paper reference list [#%94584,#%282290,#%605546,#%620759,#%564877 . . . ]
d
A
1
t
i
t
b
D

d
p
5
2
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c
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part and costs∼980s for one epoch training. For paper prediction,
the number of parameters Θ2 is ∼627 K and it requires ∼15s
for one epoch of training. Similarly, parameters Θ3 for author
prediction have ∼628 K and the time cost for an epoch is ∼140s.

. Experiments

In this section, we report the extensive experiments that we
onducted to assess the benefits of SI-HDGNN on scientific impact
rediction for both papers and authors. We use three large-scale
ulti-disciplinary academic datasets – APS, DBLP, and ACM –

or evaluation between our SI-HDGNN and several state-of-the-
rt baselines. We reiterate that the source code and datasets are
ublicly available at https://github.com/celi52/si-hdgnn

.1. Dataset

The evaluations were performed on three large-scale publicly
vailable datasets of academic publications/networks: APS, DBLP,
nd ACM. Their detailed statistics are shown in Table 2 and Fig. 4.
t is worth pointing out that our approach is not constrained to
ny particular academic domains (e.g., APS for physics, DBLP and
CM for computer science) – i.e., we did not design domain-
pecific mechanisms in SI-HDGNN which, in turn, enables it to
e easily extended to other fields such as medicine or biology.

• APS (American Physical Society) dataset is accessed at Jan
19, 2017.3 The APS academic network contains over 616 K
academic papers on 17 APS journals between 1893 and
2017.
• DBLP citation dataset [79]. The DBLP academic network

(released at October 27, 2017 by AMiner4) contains over
3.6M academic papers on 3 K venues published between
1936 and 2017.

3 https://journals.aps.org/datasets.
4 https://www.aminer.org/citation.
 c
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• ACM (Association for Computing Machinery) dataset is re-
leased at Jan 20, 2017 by AMiner. It contains over 2.3M
academic papers on 3 K venues between 1936 and 2017.

For all three datasets, each paper is associated with the infor-
mation for the index, title, authorship, reference and publication
venue/conference and year. We present the detailed information
for the paper entity in Table 3. The paper index can uniquely
identify a paper item while authors and venues are authenticated
by their names. This could yield ambiguity, as a name may be
potentially shared among several other researchers. This could be
resolved by relying on the ORCID number; however, as mentioned
in Section 3, not all authors have an ORCID number and, to our
knowledge, no other public dataset with such a property (unique
ID for each other) is available.

We set the observation window length |tob − t0| to 2 years. We
efine 20, 10 and 10 as the prediction times tpd for APS, DBLP and
CM, respectively. To avoid data leakage, we use APS data from
886–1999 to build the model and obtain nodes embeddings for
hree types of nodes. Then, we collect citation relationships dur-
ng the observation window [t0, tob] = 1997–1999 and leverage
he node representation we learned to predict the citation num-
er after 20 years in 2017. The observation time is 2006–2008 for
BLP and 2004–2006 for ACM.
We note that the papers/authors having fewer than 4 citations

uring the observation window are filtered out. The settings of
redictions for authors are the same as those for papers. We used
0% of them for training, 25% for validation, and the remaining
5% for testing.
Dataset Analysis. We now show some additional statistics of

PS papers/authors. Fig. 6 (A): For papers with more than 200
itations after 30 years since publication, most yield citations
inearly with the years (the dashed line denotes mean values),
ith a tendency to have citations during early years. A few
apers had a long hibernation period (∼10-20 years) and then
njoyed a citation burst, which indicates a ‘‘sleeping beauty’’
henomenon [8]. Fig. 6 (B) and (C) shows the complementary

umulative distribution function (CCDF) of paper citations and

https://github.com/celi52/si-hdgnn
https://journals.aps.org/datasets
https://www.aminer.org/citation
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Fig. 6. APS dataset statistics: (A): we select 509 papers which citations more than 200 after 30 years since publication before 1987. Lines represent normalized citation
growth trends, line colors indicate citation rank of papers at the tenth year, i.e., c10a /c30a × 100%; dashed line denotes the mean values. (B) and (C): Complementary
umulative distribution function (CCDF) of paper citations and author citations, respectively. (D) and (E): Pearson correlation coefficients of paper citations and author
itations over 30 years, respectively. The (i, j) block in heatmap represents the correlation between ith year’s and jth year’s cumulative citations for all papers/authors.
F): The value of the ith diagonal block of the heatmap is pta × (cta − ct−1a ), i.e., the average number of papers each author published at the ith year multiplied by the
verage number of citations each author received at the ith year; Top histogram: average published papers per author per year, Left histogram: average citations
uthors received per year (errorbars are standard deviations).
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uthor citations, respectively. We can see that lines go right over
ime (citations grow large). The paper citation generally follows
he power-law distribution, while most of the author citations
re larger than those of papers. Fig. 6 (D) and (E) show the
earson correlation coefficients of paper/author citations over
ime. It is easy to see that the relationships between author
itations in different years are less correlated compared to the
aper citation-year relationship. This also explains why author
cientific impact prediction is more difficult than paper prediction
cf. experimental results in Table 4). Fig. 6 (F) presents a 30 year
istory of average author publications and citations in the APS
ataset. Two key factors are analyzed: (i) the number of papers
ublished per year and (ii) the number of citations the author
eceived per year. We can see that except for the first year, the
verage number of published papers increases until the 12th year
nd then decreases. The peak of citations received each year is
round the 7th year. Taking the two factors together, the most
roductive career of researchers is around the 7th year to the
4th year.

.2. Baselines

We consider several state-of-the-art scientific impact pre-
iction baselines to demonstrate the effectiveness of our pro-
osed SI-HDGNN model. Three feature engineering-based mod-
ls, two point-process-based statistical models, three homoge-
eous graph-based deep learning models, and three heteroge-
eous graph representation learning based models are selected
or comparison.

The following five baselines can be used directly for scientific
mpact prediction:

• Uniform – for all papers/authors, we always predict their
impact as a fixed number, uniformly searched from the
minimum log c

tpd
p/a to maximum log c

tpd
p/a with a step of 0.001.

• Feature engineering based – these models are popular for
scientific impact prediction. Their performances are demon-
strated as powerful or comparative to others when the
selected features are quality. We carefully select structural
and temporal features and feed them into two dense layers
for prediction. Selected features include:

– Feature-ctob : we use observed citation ctob to predict
tpd
the final citation c as a simple baseline.

10
– Feature-Structural: features are extracted from the
heterogeneous academic graph including original node
in-degree, out-degree, number of neighbors, and page-
rank, mean citation node in-degree and out-degree,
10th and 90th percentiles of citation node (both in-
and out-) degree distribution, mean number of citation
node neighbors, and mean page-rank of citation nodes.

– Feature-Temporal: features are extracted from cita-
tion sequence including mean citing time, mean citing
time for first half of citations, and mean citing time for
last half of citations.

– Feature-All: all temporal and structural features are
combined for prediction.

• DeepCas [20] – is an end-to-end deep learning based predic-
tion model, which utilizes multiple random walk processes
for cascade path sampling and then uses bi-directional GRU
and attention mechanism for predictions.
• DeepHawkes [18] – aims to bridge the gap between pre-

diction and understanding of citation cascade prediction.
Specifically, DeepHawkes proposes a deep information cas-
cade learning model that combines Hawkes self-exciting
point process by the following three components: user em-
bedding, path encoding & pooling, and a non-parametric
time decay function.
• VaCas [25] – is a deep probabilistic citation graph learning

model which learns hierarchical citation-sequence repre-
sentation and leverages variational auto-encoder for scien-
tific knowledge diffusion learning.
• CasFlow [24] – is a hierarchical structure learning frame-

work that learns citation-sequence uncertainties via varia-
tional inference and normalizing flows. It combines the local
structure of citation graph with global author collaboration
network (homogeneous) for performance improvement.

The following five baselines are used for homogeneous- or
eterogeneous-aware node representation learning. We incor-
orate the learned representations into SI-HDGNN’s specifically
esigned temporal aggregation module to predict the final sci-
ntific impact for both papers and authors. These baselines are
ndicated by a ‘‘+ T’’ suffix.

• DeepWalk [63]: which is a classic node representation learn-
ing method inspired by language model SkipGram. It em-
ploys truncated random walk to learn local information of

nodes in graph.
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erformance comparison between SI-HDGNN and the baselines on three citation datasets. Note that bold values indicate better results than other configurations —
he lower the MSLE and/or the higher the ACC, the better the performance.
Model APS Paper APS Author DBLP Paper DBLP Author ACM Paper ACM Author

MSLE ACC MSLE ACC MSLE ACC MSLE ACC MSLE ACC MSLE ACC

Uniform 0.638 54.2 1.401 23.9 0.761 47.7 1.270 24.2 0.812 48.7 1.083 24.3
Feature-ctr 0.402 59.5 0.991 36.2 0.296 62.6 0.828 40.8 0.323 64.3 0.622 47.5
Feature-Structural 0.409 55.7 0.938 43.9 0.308 62.9 0.618 50.7 0.297 66.0 0.519 51.5
Feature-Temporal 0.398 59.5 0.995 37.0 0.285 62.5 0.789 42.1 0.275 65.7 0.581 48.6
Feature-All 0.381 55.4 0.881 42.9 0.267 65.2 0.562 51.1 0.255 65.3 0.456 55.3
DeepCas [20] 0.501 51.2 1.421 22.3 0.392 41.5 1.329 30.8 0.301 53.9 1.174 35.8
DeepHawkes [18] 0.442 55.3 1.382 36.7 0.325 45.7 1.269 35.7 0.280 58.8 1.085 40.4
VaCas [25] 0.406 60.0 1.402 30.5 0.281 64.6 1.274 32.4 0.259 67.5 1.084 37.3
CasFlow [24] 0.383 60.2 1.401 30.7 0.283 64.4 1.276 32.3 0.269 66.8 1.083 37.2

DeepWalk [63] + T 0.407 59.8 0.892 44.1 0.267 66.1 0.544 53.6 0.264 65.8 0.423 57.3
GraphSAGE [75] + T 0.402 58.6 0.896 41.5 0.269 65.7 0.539 53.3 0.259 66.1 0.405 57.7
ProNE [80] + T 0.427 57.4 0.914 43.2 0.604 50.7 0.604 50.7 0.285 64.7 0.453 57.6
metapath2vec [65] + T 0.409 60.9 0.880 47.0 0.261 66.6 0.552 52.1 0.267 67.1 0.434 56.3
HetGNN [29] + T 0.394 58.2 0.892 43.4 0.260 66.4 0.526 52.2 0.256 67.4 0.404 58.2

SI-HDGNN MLP 0.607 50.0 1.006 41.5 0.556 48.3 0.758 44.9 0.571 50.1 0.657 49.8
SI-HDGNN w/o Author 0.370 60.9 0.906 43.4 0.251 67.8 0.522 53.5 0.242 69.4 0.398 59.0
SI-HDGNN w/o Venue 0.389 60.8 0.897 42.4 0.250 67.4 0.526 53.3 0.257 67.5 0.407 59.0
SI-HDGNN-MaxPooling 0.501 57.7 1.021 43.7 0.437 58.2 0.601 52.1 0.438 60.1 0.456 59.9
SI-HDGNN-SumPooling 0.383 60.2 0.915 41.7 0.248 67.3 0.518 54.4 0.245 67.6 0.383 61.1
SI-HDGNN-Concat 0.391 59.2 0.889 41.0 0.253 66.4 0.506 53.4 0.239 67.7 0.396 60.1

SI-HDGNN 0.366 63.0 0.860 45.8 0.245 67.4 0.515 54.3 0.239 70.3 0.390 59.4
w
t
p
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• GraphSAGE [75]: is an inductive node representation learn-
ing framework which leverages node features for generating
node embeddings by neighbor sampling and aggregating
algorithms.
• ProNE [80]: is a fast and scalable graph representation

model. It adopts sparse matrix factorization for learning
acceleration and spectral propagation for embedding en-
hancement.
• metapath2vec [65]: is a heterogeneous graph learning

model, which designs a meta-path-guided random walk
algorithm to sample heterogeneous neighbors.
• HetGNN [29]: learns heterogeneous node embeddings by

aggregating type-based node features and neighboring
nodes. It considers both structure heterogeneity and node
content heterogeneity by using MLP and Bi-RNN aggrega-
tors.

In addition, we defined five variants of SI-HDGNN for the
blation study. To evaluate the quality of the graph representa-
ion, we directly feed the learned node embedding into two-layer
LPs as SI-HDGNN MLP. To evaluate the impact of author/venue
mbeddings, we separately remove the author part or venue
art in Eq. (11) as two variants SI-HDGNN w/o Author and SI-
DGNN w/o Venue. To evaluate the effectiveness of citation
ggregators, we use max pooling, sum pooling, or concatenation to
ubstitute for the RNN aggregator. The resulting three variants are
enoted as SI-HDGNN-MaxPooling, SI-HDGNN-SumPooling, and
I-HDGNN-Concat.

.3. Metrics

We use two widely adopted evaluation metrics following pre-
ious work [16,18,42] – mean square logarithmic error (MSLE)
nd accuracy (ACC) – defined as

SLE =
1
Nt

Nt∑
i=1

(log ĉ
tpd
pi − log c

tpd
pi )2, (19)

ACC =
1
Nt

Nt∑
i=1

1(0.5 ∗ c
tpd
pi ≤ ĉ

tpd
pi ≤ 1.5 ∗ c

tpd
pi ), (20)
11
here 1(·) is the indicator function, Nt is test sample size for
he SIPP task, and ĉ

tpd
pi is the predicted scientific impact of pa-

er/author at prediction time tpd.

.4. Experimental settings

For all baseline models, whenever applicable, we set the em-
edding dimension to 128. The random walk restart probability
is 0.5, the walk length is 30, and the number of walks for

ach node is 10. For type-specific parameters Dα(∗),Dβ (∗),Dγ (∗),
we use node in-degree and edge weights as a proxy of node
influence.

For SI-HDGNN and its variants, the learning rate is chosen from
{100, 10−1, . . . , 10−5}. The length of the paper citation sequence
of all methods is set to 100 – i.e., the maximum number of
citation sequences. For papers with citation sequence lengths
exceeding 100, we select their first 100 citations (for author
aggregation, the length of RNN is set to 6). For author scien-
tific impact prediction, we select at most 15 papers (and each
of its first 100 citations) during the observation window. The
numbers of units in the two-layer Bi-RNNs are set to 128 and
64, respectively. The number of units in two-layer MLPs are set
to 64 and 32, respectively. For multi-head attention, we set the
head number as 8. For content aggregation RNNs, we obtain
128 dimensional paper title embeddings pre-trained via BERT
and bert-as-service [72,73], and node embeddings pre-trained via
DeepWalk [63]. All the other hyper-parameters of baselines are
set to their default values. Performance results are reported with
early stopping on validation loss with 10 epochs of patience.

5.5. Prediction performance

We show the performance of all the models on three citation
datasets in Table 4, and we discuss the main observations next.

Feature-based models obviously outperform the uniform
model, which predicts the impact as a fixed number. This in-
dicates that the features, e.g., citation number, academic graph
structure and citation sequential information, are useful and play
an important role in paper/author prediction. One interesting ob-
servation is that Feature-Temporal outdoes Feature-Structural on
paper prediction, while Feature-Structural performs better in au-
thor prediction. This can be attributed to the fact that sequential
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nformation reveals more citation pattern information that ben-
fits paper predictions. Structural features, e.g., node in-degree,
ut-degree and number of neighbors, reflect the popularity of the
uthor in the academic network, which plays a leading role in
mproving the author impact forecasting performance. Feature-
ll is the combination of temporal and structural features. It
erforms well and even surpasses the deep cascade method.
SI-HDGNN and its variants outperform all the other meth-

ds in both paper and author scientific impact prediction in
ll three datasets. This result demonstrates the effectiveness of
earning interactions among heterogeneous nodes with the pro-
osed heterogeneous information aggregation, which can be fur-
her verified by the fact that both feature-based models and
omogeneous cascade prediction methods do not show a com-
arable performance. Previous deep learning-based prediction
ethods, e.g., DeepCas, DeepHawkes, VaCas and CasFlow, do not
istinguish the type of nodes and therefore fail to model their
omplex and meaningful interactions. Specifically, compared with
etGNN+T, our proposed SI-HDGNN model decreases the paper
rediction error MSLE by up to 7.1% and increases the prediction
ccuracy by up to 4.8%.
Author impact prediction is much harder than that of paper.

s shown in (B-E) in Fig. 6, the citation number of authors is
igher than that of papers by orders of magnitude, as well as the
oefficients of correlation between observed and future citations.
n fact, in settings of two-year observations, the proportion of
verage observed citations c2p to c20p is approximately 9.1% for
uthors. In contrast, the proportion for papers is 34.6% (cf. (A)
n Fig. 6), which explains why prediction for authors’ impact is
ore difficult – i.e., largely due to insufficient observations and
normous variability in the authors’ productivity [15] (cf. (F) in
ig. 6). In addition, the paper citation is strongly correlated to fac-
ors such as the citations a paper has gained and the importance
f the publication venue (e.g., journal impact factor), which can
e easily modeled in the graph with node attributes. Also, author
mpact is far more unstable due to implicit factors such as funding
cheme, tenure, gender issues — all of which need to be quantified
ith external high-resolution data repositories. There are also
iscrepancies between paper prediction and author prediction in
aselines. The performances of deep learning-based models drop
everely on author prediction, and SI-HDGNN ’s improvements
ver baselines are also larger on author prediction.

.6. Ablation study

We now investigate the effect of essential modules in SI-
DGNN. First, as shown in Table 4, SI-HDGNN MLP exhibits the
orst performance among all the variants, which emphasizes the

mportance of SI-HDGNN’s specifically designed temporal aggre-
ation module. The information aggregation mechanism used in
I-HDGNN is better than other graph embedding models, includ-
ng two heterogeneous embedding methods, i.e., metapath2vec
nd HetGNN, because of the more complex relations considered
n our model and the benefit of considering temporal depen-
encies between citation sequences and/or author sequences. For
xample, SI-HDGNN models 7 types of relations among nodes,
hereas HetGNN only considers 3 edge types. Additionally, the
enue plays a vital role in predicting the impact of an author
r a paper. This is demonstrated by the significant performance
egradation after removing venue embeddings in Eq. (11). Au-
horship, surprisingly, is less important than the journal that a
aper published in, although masking the authorship information
ay slightly degrade the performance. For aggregation choices,
ax pooling and sum pooling are sometimes superior to the
NN aggregator used in SI-HDGNN due to their lack of sequential
ependencies.
12
Table 5
MSLE of two author prediction approaches on two datasets.
Dataset APS Author DBLP Author ACM Author

Cite-Seq 1.145 0.762 0.569
Cite-Pub-Seq 0.860 0.515 0.390

5.7. Discussion on author prediction

Although the observation (cf. Fig. 6) that the proportion of av-
erage observed citation c2p to c20p for paper (34.6%) is higher than
hat of author (9.1%) could explain why the author prediction task
s harder, we conjecture that this deficiency is caused by the mix
f paper citations from different research disciplines. To better
nderstand the inner drivers of the author’s scientific impact and
ry to alleviate this deficiency, we designed two approaches for
uthor scientific impact prediction and compared them in Table 5.

• Cite-Seq. Given an author a, we denote {(pj, tj)}j as the set
of a’s citations within observation window [tpb, tob](tj ≤ tob).
Then an RNN is used to sequentially aggregate the citation
paper embeddings ordered by the publication time tj, and
use the last hidden state hci

a as the representation of author
a’s potential scientific impact.
• Cite-Pub-Seq. Different from Cite-Seq, which pipelines all

author citations into one flat RNN, we adopt a hierarchi-
cal RNN network which predicts the impact in two steps:
first predict individual publication impact via a citation-
level RNN and then aggregate all the predicted publication
impacts by utilizing a career-level Bi-RNN (cf. Fig. 5). We use
this approach as default in this paper.

The prediction results on the two datasets are shown in Ta-
le 5. We can see that Cite-Pub-Seq approach effectively de-
reases the prediction errors on the two datasets (see Fig. 13).

.8. Qualitative analysis

To make an intuitive evaluation of SI-HDGNN prediction per-
ormance. We show the comparison of the predicted value and
he ground truth for SIPP and SIPA in Fig. 7. Black solid points
re the true value, while empty circles in the gray color come
o denote the predicted value. It is clear that major parts of
he circles are located around the solid points for the results of
BLP and ACM, which indicates that SI-HDGNN performs better
n DBLP and ACM.

Fig. 8 shows the prediction results on 6 representative journals
the lower the MSLE and/or the higher the ACC, the better

he result. The performance of SI-HDGNN varies significantly on
ifferent publication venues — this is natural since the venue is a
trong indicator for future impact accumulation. In addition, we
ound that the prediction accuracy is affected by the citation dis-
ribution of papers in a journal. For example, the standard devia-
ion of 20 years of citations of papers (i.e., c20p ) on Phys. Rev. Lett.
s higher (61.64), whereas the value on Phys. Rev. A is a little
ess (45.30). This discrepancy also reveals why the prediction of
apers on Phys. Rev. Lett. is more difficult.
In the same way, we collect 10 representative AI conferences

n the DBLP dataset and 7 famous journals and conferences in the
CM dataset and plot the performance in terms of MSLE and ACC
n Fig. 9 and Fig. 10, respectively.

Fig. 11 plots the latent space learned by SI-HDGNN in the APS
ataset, where we can observe a clear clustering phenomena of
uthor/paper embeddings from (a) and (c). It appears that papers
ublished in the same journal tend to cluster together, which
lso indicates that publication venue is an important indicator
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Fig. 7. The comparison of predicted value and the ground truth for SIPP and SIPA. Black solid points in all figures are the true value, while empty circles in gray
color come to denote the predicted value.
Fig. 8. Paper Prediction Performance on 6 representative APS venues.

Fig. 9. Paper Prediction Performance on 10 representative AI conferences in
DBLP dataset.

Fig. 10. Paper Prediction Performance on 7 representative ACM journals and
onferences.

or scientific impact prediction. In addition, we also visualize a
‘crowd effect" of high impact papers/authors, as shown in (b)
and (d). This also implies strong correlations among the latent
representations of high impact scholars and papers. Another in-
teresting result that can be visualized is the gradually decaying
color of the paper/author citations, implying that a heavy-tailed
distribution of scientific impact is successfully (to some extent at
least) encoded in our model.

For DBLP, we choose 13 representative conferences in AI areas
and classify them into 5 domains according to CSRanking (http:
//csrankings.org/). The conferences selected from the Artificial
intelligence field are AAAI and IJCAI, while the conferences se-
lected from the Computer vision field include CVPR, ECCV and
13
ICCV. Conferences ICML, KDD and NeurIPS represent the Machine
learning & data mining field. Another three conferences ACL,
EMNLP and NAACL point to the natural language processing field.
Two conferences (SIGIR and WWW) are selected for the Web &
information retrieval field. Different with the APS author t-SNE
(cf. Fig. 11(b)) with clear clustering, the DBLP authors of four
domains, i.e., AI, ML&DM, NLP and W&I, together (cf. Fig. 12(b)),
except with the authors from the CV field. We speculate that this
is the cause of the difference between disciplines. The themes
of venues in APS differ significantly from each other. For exam-
ple, the Phys. Rev. B (Physical Review B) focuses on condensed
matter physics while the journal Phys. Rev. C (Physical Review C)
concentrates on the Nuclear physics. However, crossover studies
can be widely found in the AI domain. Some conferences, such
as IJCAI, AAAI, NeurIPS and ICML, receive papers from the CV,
NLP or DM fields. Moreover, we can see that although some
authors (green colored points) who published more papers at the
comprehensive fields of conference, e.g., the ML&DM with ICML,
KDD and NeurIPS, can also be discriminated that they are closer to
the CV or NLP field. That is our heterogeneous academic network,
which extracts complex cooperation relations and citing-cited
behavior, contributes to this meaningful node representation.
Similar results can also been found in Fig. 13 for ACM dataset.

5.9. Case study

In this section, we present a series of analyses to help us better
understand the performance of SI-HDGNN author prediction. We
first explore when our model works or fails from a statistical
perspective. Next, we study the publication and citation trends
of the individual scholars.

5.9.1. Interpreting the performance differences
To gain deeper insight into SI-HDGNN author prediction from

a statistical perspective, we select the 500 best and 500 worst
author predictions produced by SI-HDGNN in the DBLP dataset.
Then, we count and compute the average quantity for the publi-
cation and citation of new authors in 2006, i.e., their first publi-
cations were received in 2006, with each passing year. The yearly
trend for the worst 500, best 500, and all authors are shown in
Fig. 15.

Moreover, Figs. 14 and 16 plot the trends for scholars in
the APS and ACM datasets, respectively. Figs. 14(a) and 15 (a)

delineate that the number of publications for both CS and Physics

http://csrankings.org/
http://csrankings.org/
http://csrankings.org/
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Fig. 11. Plot APS dataset latent space of 6 venues after mapping to 2D with t-SNE (best viewed in color). (a) and (c) show paper/author embeddings retrieved from
he heterogeneous graph representation (i.e., E(p) or E(a), cf. Section 4.1) – colors are specified by venues; (b) and (d) plot paper/author citation embeddings from
he prediction layer (i.e., h2 , cf. Section 4.2) – colors are specified by magnitude of citations.
Fig. 12. Plot DBLP dataset latent space of 5 domains of AI paper after mapping to 2D with t-SNE. The abbreviations AI, CV, ML&DM, NLP and W&I represent the
rtificial intelligence, Computer vision, Machine learning & data mining, Natural language processing and Web & information retrieval, respectively. (a) and (c) show
aper/author embeddings retrieved from the heterogeneous graph representation — colors are specified by venues; (b) and (c) plot paper/author citation embeddings
rom the prediction layer — colors are specified by magnitude of citations.
Fig. 13. Plot ACM dataset latent space of 7 venues of Computer Science paper after mapping to 2D with t-SNE. (a) and (c) show paper/author embeddings retrieved
rom the heterogeneous graph representation — colors are specified by venues; (b) and (c) plot paper/author citation embeddings from the prediction layer — colors
re specified by magnitude of citations.
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uthors may drop in the early stage of his or her academical
areer. We can see that the citation quantity per year for these
uthors increases linearly in the first 10 years in Figs. 14(b)
nd 15(b).
We speculate that authors with steady publications and in-

reasing citations are harder to model by SI-HDGNN. One reason
s that the useful information utilized for impact prediction is
onstrained by the length of the observation window. We can see
hat the citations are the same for the worst 500 and best 500
n the first two years (cf. Fig. 15(b)). Therefore, the predictor is
rained with indifferent knowledge as two years of observation
s not enough for authors to receive diverse citations. Another
eason is the unbalanced data distribution. The author impact
ctually follows a heavy-tailed distribution. Most researchers are
ot so popular, while only a few scholars have a high reputation.
his phenomenon contributes to the unbalanced trained data
istribution. The classifier receives many supervision signals from
eneral scholars so that the impact predictions of popular authors
re hard to derive in such situations. One possible solution to
14
lleviate this inherent unbalanced data distribution problem is
ecoupling representation [81], which can be seen as future work.

.9.2. Performance of individual scholars
We collect six anonymous authors with good and bad perfor-

ances in three datasets, i.e., each dataset has one good author
rediction and one bad. We plot the yearly publication and ci-
ation for them in Figs. 17, 18 and 19, respectively. For APS, we
hoose two new authors in 1997, i.e., their first publication years
re 1997, denoted as APSgood and APSbad. After 20 years in 2017,
PSgood received 264 citations while APSbad received 280 citations.
he predicted values are 263 and 117, respectively. During the
bservation time 1997–1999, APSgood received approximately 30
itations while the number for APSbad was only 5. From Fig. 17,
e can see that authors with fewer publications and citations in
he observations are more likely to be predicted with a fewer
itations.
For DBLP, we choose one good author prediction with 361 for

he prediction number and 397 for ground-truth, and one bad
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Fig. 14. Average publication (a) and citation (b) per year for the worst 100, best
00 and all authors of the segmentation test from 1997 to 2017 in APS dataset.

Fig. 15. Average publication (a) and citation (b) per year for the worst 500, best
00 and all authors of the segmentation test from 2006 to 2016 in DBLP dataset.

Fig. 16. Average publication (a) and citation (b) per year for the worst 500, best
00 and all authors of the segmentation test from 2004 to 2014 in ACM dataset.

uthor prediction with 40 for the prediction number and 451 for
he ground-truth from prediction results.

Our model failed when one’s flashpoint came up in her later
cademic career (cf. Fig. 18(b)). Another observation is that some
esearchers may be active for the first five years and will not
ublish paper or cooperate with others after that (cf. Figs. 17(a),
8(b), 19(a) and (b)). This is normal in real life when one starts
er research as she is a PhD candidate, and drops her academic
areer after graduation. However, this actually contributes to the
ifficulty of long-term author prediction, as whether she will
ontinue her research career or not can hardly be inferred with
imited observations.
15
Fig. 17. Yearly publication and citation for two authors from 1997 to 2017 in
APS dataset. Shaded area highlights the author’s publication and citation during
the observation window [t0, tob] = 1997− 1999.

Fig. 18. Yearly publication and citation for two authors from 2006 to 2016 in
DBLP dataset.

Fig. 19. Yearly publication and citation for two authors from 2004 to 2014 in
ACM dataset.

6. Conclusion

We presented SI-HDGNN, a novel methodology for effectively
quantifying and predicting the scientific impact of scholars and
research publications by bridging the dynamic processes of im-
pact evolution and complex heterogeneous node interactions. We
devised an efficient network sampling method considering rich
node relations, along with a temporally attentive neighbor aggre-
gation network to model the complex and accumulating dynamic
processes of scientific impact. We further developed a tempo-
ral aggregation module specifically for author scientific impact
prediction for performance improvement. Evaluations on three
large-scale real-world academic datasets demonstrated the su-
perior performance of SI-HDGNN in comparison to several state-
of-the-art baselines. An immediate extension of our work is to
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n the node sampling strategy. Our future work will focus on
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uch as co-author and paper recommendations [82,83].
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