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Abstract—Forecasting the electricity demand has many 
critical applications for power station generation plans, energy 
resource allocations, power transmissions, and related decision 
makings. Existing electricity demand forecasting methods are 
mainly based on deterministic time-series prediction techniques 
and recurrent neural networks, ignoring the intrinsic 
uncertainties of electricity demands and the long-range 
temporal dependencies between electricity volumes and various 
external features. In this work, we proposed a Transformer-
guided probabilistic electricity demand forecasting framework 
(TPEDF) that learns both the global-local electricity demand 
dependencies and the complex correlations of external features 
entangled with the electricity demands. Our proposed 
framework predicts electricity demand distributions with a 
probabilistic state space model, which can effectively eliminate 
the forecasting errors and enhance the expressiveness of the 
model by taking the electricity uncertainty into account. 
Extensive experiments on real-world datasets demonstrate that 
TPEDF significantly outperforms existing models on electricity 
demand forecasting.  

Keywords—electricity demand forecasting, time-series 
forecasting, transformer, state space model, uncertainty 

I. INTRODUCTION

Electricity Demand Forecasting (EDF) is a critical time-
series prediction task and has attracted tremendous research 
attention in recent years [1]-[5]. The goal of the EDF is to 
predict the future (long-term and short-term) electricity 
demand, given the historical observations and various external 
features that may have an impact on the electricity demand in 
the studied area. With rising concerns about global warming, 
environmental degradation, and natural hazards, governments 
and companies are increasingly turning to the use of clean 
energies such as wind and hydroelectric generation. Given the 
fact that renewable power generation approaches are less 
stable and uncertain than those traditional methods, and the 
energy consumption around the world is rapidly increasing 
(e.g., the electricity consumption in India increases by 7% on 
average each year [6]), how to accurately predict the future 
electricity demands becomes an essential yet challenging task 
for power systems on electricity planning, management, 
allocation, and transmission [7]. 

Existing electricity demand forecasting methods can be 

categorized into two directions: traditional and deep learning-
based methods [8]. Traditional EDF methods include feature 
engineering and stochastic time-series pattern analysis. These 
methods are based on expert-specified rules and hand-crafted 
features, and their predictions are also highly interpretable. 
For example, Braun et al. conducted a multiple regression 
analysis using various climate features such as temperature 
and humidity for electricity consumption estimation [9]. 
Another line of methods uses statistical machine learning 
techniques such as support vector machine (SVM) [10] and 
Autoregressive Integrated Moving Average (ARIMA) [11] to 
learn data patterns from electricity time-series. More recently, 
deep learning-based methods achieved great success in time-
series forecasting due to their capabilities of learning 
expressive time-series representations [8], e.g., Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU) [12]. 

However, existing prediction methods for electricity 
demand forecasting face several limitations. First, traditional 
methods are constrained by the parameter-tuning process 
(which is hard to be determined) and consequently less 
generalized for different types of electricity demands. Second, 
they usually rely on deterministic learning methods that 
cannot handle the uncertainties that exist in the electricity 
time-series. Moreover, recurrent-based learning frameworks 
cannot fully model the complex correlations between 
electricity observations as well as external features, especially 
for long time-series of electricity demands (due to error 
accumulations [1], [13]).  

To address the aforementioned limitations, we propose a 
new time-series learning method termed Transformer-guided 
Probabilistic Electricity Demand Forecasting (TPEDF), 
which adopts (1) the transformer architecture [14] for long-
range electricity demands modeling and (2) a probabilistic 
state space model [15] for time-series uncertainty handling. 
The multi-head self-attention mechanism in transformer 
structure can capture global dependencies between electricity 
demands and complex external factors. TPEDF goes beyond 
the traditional recurrent-based methods (which are prone to 
error accumulations) and is able to infer the electricity demand 
distributions at each timestamp with a non-linear state space 
model for data uncertainties. Extensive experiments on two 
large-scale real-world datasets demonstrate the effectiveness 
of TPEDF compared to the strong baselines. We also conduct 
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case studies to analyze the behaviors of the prediction model 
on electricity demand forecasting. 

II. PRELIMINARIES 
Electricity Demand Forecasting (EDF) is a typical time-

series prediction problem associated with many external 
factors that pose significant impacts on the actual electricity 
demand. An illustration of the electricity time-series data (one 
week) in the Panama region is shown in Fig. 1. Now we 
formally define the EDF problem.  

 
Fig. 1. An illustration of Panama electricity deman time-series. 

Given a sequence of 𝑇𝑇 electricity demand observations 
𝐗𝐗1:T = {𝐗𝐗1,𝐗𝐗2, … ,𝐗𝐗t, … ,𝐗𝐗T} , each observation 𝐗𝐗t =
{𝐗𝐗te,𝐗𝐗ta} ∈ 𝑅𝑅𝑑𝑑𝑥𝑥 is composed of two groups of data: (1) 𝐗𝐗te is 
the volume of the electricity demand during the observation 
window; and (2) 𝐗𝐗ta  is the auxiliary observations, e.g., 
temperature and humidity at time 𝑡𝑡. Here 𝑑𝑑𝑥𝑥 is the dimension 
of the external factors.  

In addition, we also have a set of associated external 
features denoted as 𝐄𝐄1:T = {𝐄𝐄1,𝐄𝐄2, … ,𝐄𝐄t, … ,𝐄𝐄T}, where each 
𝐄𝐄𝐭𝐭  represents certain time-dependent features (e.g., hour of 
day and day of week) as well as other features that may have 
explicit or implicit correlations with the electricity demand 
(e.g., price of the electricity and power plants capacities). With 
the above definitions, we have the EDF problem defined as:  

Definition 1 (Electricity Demand Forecasting): Given 
historical electricity demand observations 𝐗𝐗1:𝑇𝑇 and associated 
external features 𝐄𝐄1:𝑇𝑇+𝜏𝜏 , we aim to predict the future 
electricity demands 𝐗𝐗𝑇𝑇+1:𝑇𝑇+𝜏𝜏

𝑒𝑒 , which can be expressed as a 
conditional distribution: 

𝑝𝑝(𝐗𝐗𝑇𝑇+1:𝑇𝑇+𝜏𝜏
𝑒𝑒 |𝐗𝐗1:𝑇𝑇,𝐄𝐄1:𝑇𝑇+𝜏𝜏;𝛩𝛩).                        (1) 

Here 𝜏𝜏  is the forecasting horizon, 𝛩𝛩 are the learnable 
parameters of the forecasting model. 

III. METHODOLOGY 
In this section, we detail the framework of the proposed 

TPEDF method, which consists of a transformer-guided 
electricity demand learning module and a probabilistic 
inference module based on a state space model for estimating 
the electricity demand distributions. An overview of TPEDF 
is depicted in Fig. 2. 

 
Fig. 2. An overview of the proposed TPEDF framework which composes of 
a transformer-guided electricity demand learning module for fusing 
electricity observations and features and a non-linear state space model for 
probabilistic demand distribution estimation and forecasting. 

A. Transformer-Guided Electricity Demand Learning 
To predict the future electricity demands 𝐗𝐗𝑇𝑇+1:𝑇𝑇+𝜏𝜏

𝑒𝑒 , we 
need to effectively aggregate the current and historical 
observations of electricity demands 𝐗𝐗1:𝑇𝑇 and related external 
features 𝐄𝐄1:𝑇𝑇, such as weather and temperature. For simplicity, 
we denote their concatenation as 𝒳𝒳𝓉𝓉 = [𝐗𝐗𝑡𝑡 ,𝐄𝐄𝑡𝑡]. The demand 
learning module is followed by the encoder-decoder 
architecture. The encoder network comprises multiple multi-
head attention layers and feed-forward layers for learning 
electricity demand observations while also incorporating the 
fusing of complex external features.  

As described in [14], recurrent-based neural networks such 
as LSTM and GRU are inefficient in capturing the long-range 
dependencies between input observations, given the nature of 
their sequential learning manners. For complex time-series 
data, especially those data with long-range and periodic 
patterns. As we can observe from Fig. 1, the electricity 
demands are cyclically rising and falling, e.g., the demands 
are at a low level during nighttime and are rapidly growing 
during the daytime, and the demands are lower on weekends 
and higher on weekdays. To model the long-range 
dependencies between electricity demand observations, we 
use self-attention modules [16] as the building blocks of the 
TPEDF's encoder network. Attention modules are able to 
generate attention scores between the model's input variables 
(e.g., a large score indicates the two variables have a stronger 
dependency and vice versa) from a global perspective. As a 
consequence, both short-term and long-term dependencies of 
the input variables are captured, and we can learn better 
electricity demand observation representations for accurate 
demand forecasting. 

Specifically, to encode the temporal information of the 
electricity demand sequence in a non-recurrent way, we first 
use the positional encoding layer for each timestamp 𝑡𝑡: 
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PE𝑡𝑡,2𝑖𝑖 = sin�𝑡𝑡/100002𝑖𝑖/𝑑𝑑𝒳𝒳� ,                          (2) 

PE𝑡𝑡,2𝑖𝑖+1 = cos�𝑡𝑡/100002𝑖𝑖/𝑑𝑑𝒳𝒳�,                         (3) 

here 𝑑𝑑𝒳𝒳  is the dimension of the input variables and 𝑖𝑖 ∈
{1, … , ⌊𝑑𝑑𝒳𝒳/2⌋} . After the positional encoding, we adopt 
multiple multi-head self-attention layers to learn electricity 
demand hidden representations. Given input 𝒳𝒳1:𝑇𝑇 , the self-
attention module is defined by: 

𝐐𝐐 = 𝒳𝒳𝐖𝐖𝐐𝐐,  𝐊𝐊 = 𝒳𝒳𝐖𝐖𝐊𝐊,  𝐕𝐕 = 𝒳𝒳𝐖𝐖𝐕𝐕,               (4) 

𝐀𝐀 = Softmax �𝐐𝐐𝐊𝐊
T

�𝑑𝑑𝐾𝐾
�𝐕𝐕,                         (5) 

Here 𝐐𝐐,𝐊𝐊 and 𝐕𝐕 are the matrices of query, key, and value 
obtained by multiplication of the input 𝒳𝒳 and transformation 
matrices 𝐖𝐖𝐐𝐐,𝐖𝐖𝐊𝐊 ∈ 𝑅𝑅𝑑𝑑𝒳𝒳×𝑑𝑑𝐾𝐾  and 𝐖𝐖𝐕𝐕 ∈ 𝑅𝑅𝑑𝑑𝒳𝒳×𝑑𝑑𝑉𝑉 . Followed 
by the self-attention module is the position-wise feed-forward 
(FF) neural networks to transform attention output 𝐀𝐀. Then we 
adopt multiple self-attention networks to enhance the 
representation learning process, and the electricity demand 
hidden representation 𝐇𝐇1:𝑇𝑇 = FF(𝐀𝐀) is obtained. The decoder 
network can be the same as the encoder network, e.g., stacking 
self-attention layers; other types of layers can also be used 
here. Next, we illustrate how to utilize the state space model 
for probabilistic electricity demand distribution estimation. 

B. Probabilistic State Space Model 
The probabilistic state space model is able to account for 

electricity demand uncertainties by providing a traceable 
multi-step forecast distribution [15]. In particular, the non-
linear state space model can be described as:  

𝐋𝐋𝑡𝑡′ = 𝐓𝐓𝑡𝑡𝐋𝐋𝑡𝑡−1 + 𝐁𝐁𝑡𝑡 + 𝐎𝐎𝑡𝑡𝜖𝜖,                              (6) 

𝒳𝒳𝑡𝑡 = 𝐂𝐂𝑡𝑡𝐋𝐋𝑡𝑡 + 𝐃𝐃𝑡𝑡 + 𝐑𝐑𝑡𝑡𝜖𝜖,                                  (7) 

𝐋𝐋𝑡𝑡 = 𝛿𝛿(𝐋𝐋𝑡𝑡′ ),                                                     (8) 

𝒳𝒳𝑡𝑡 = 𝛿𝛿(𝒳𝒳𝑡𝑡
′),                                                    (9) 

𝜖𝜖 ∼ 𝒩𝒩(0,1),                                                (10) 

Where 𝛿𝛿  is the tan activation function, 𝐋𝐋𝑡𝑡 ∈ 𝑅𝑅𝑑𝑑𝑠𝑠  is the 
latent states, 𝑑𝑑𝑠𝑠 is the dimension of the latent states, 𝐓𝐓𝑡𝑡 ,𝐂𝐂𝑡𝑡 ∈
𝑅𝑅𝑑𝑑𝑠𝑠×𝑑𝑑𝑠𝑠  are the transition matrices from the previous 
timestamp to the current timestamp of the electricity demand, 
𝐎𝐎𝑡𝑡  and 𝐑𝐑𝑡𝑡  are the variances of the latent states and 
observations, respectively. Then the probabilistic distributions 
at each timestamp 𝑡𝑡 can be described as: 

𝑝𝑝(𝐋𝐋0) = 𝒩𝒩(𝐋𝐋0|𝟎𝟎, 𝐈𝐈),                                          (11) 

𝑝𝑝(𝐋𝐋𝑡𝑡) = 𝒩𝒩�𝐋𝐋𝑡𝑡�𝛿𝛿(𝐓𝐓𝑡𝑡𝐋𝐋𝒕𝒕−𝟏𝟏 + 𝐁𝐁𝑡𝑡),diag(𝐎𝐎𝑡𝑡
2)�,      (12) 

𝑝𝑝(𝒳𝒳𝑡𝑡) = 𝒩𝒩�𝒳𝒳𝑡𝑡�𝛿𝛿(𝐂𝐂𝑡𝑡𝐋𝐋𝑡𝑡 + 𝐃𝐃𝑡𝑡),diag(𝐑𝐑𝑡𝑡
2)�,         (13) 

where 𝐋𝐋0  is the initial latent states and diag()  is the 
diagonal function. 

Next, we show how to optimize the network and sample 
electricity demand forecastings from the distributions. Let 
𝐗𝐗𝐭𝐭

(𝐢𝐢)be the 𝑖𝑖 − 𝑡𝑡ℎvalue of the input observation 𝐗𝐗𝑡𝑡and Θ be the 
learnable parameters of the model, the optimization objective 
of TPEDF is defined as a combination of two losses:  

ℒΘ = log𝑝𝑝 (𝐗𝐗1:𝑇𝑇+𝜏𝜏|𝐗𝐗1:𝑇𝑇,𝐄𝐄1:𝑇𝑇+𝜏𝜏)                               (14) 

 = ∑ log𝑝𝑝 (𝐗𝐗𝐭𝐭|𝐗𝐗1:𝑡𝑡−1,𝐄𝐄1:𝑡𝑡)𝑇𝑇+𝜏𝜏
𝑡𝑡=1                               (15) 

= ∑ log 𝑐𝑐𝑡𝑡cross𝑇𝑇+𝜏𝜏
𝑡𝑡=1 + ∑ log𝑝𝑝 �𝐗𝐗𝑡𝑡

(𝑖𝑖)�Σ1:𝑡𝑡
∗ ,Φ1:𝑡𝑡�

𝑑𝑑𝑠𝑠
𝑖𝑖=1 ,   (16) 

where the first term of the objective optimizes a 
covariance log 𝑐𝑐𝑡𝑡cross defined in [1] and the second term is the 
log-likelihood function calculated with the Kalman filter [17]. 
The model parametersΦcan be updated by standard gradient 
descent algorithms such as Adam [18]. The electricity demand 
forecasting process is then iteratively performed at each 
timestamp 𝑡𝑡 ∈ [𝑇𝑇 + 1,𝑇𝑇 + 𝜏𝜏]. 

IV. EMIPIRICAL EVALUATION 
In this section, we evaluate the prediction performance of 

the proposed TPEDF model compared with state-of-the-art 
baselines on two real-world datasets. We first introduce the 
details of datasets, baselines, metrics, and experimental 
settings. Then we analyze the performance comparison results 
and conduct case studies.  

A. Data 

TABLE I.  PANAMA DATA STATISTICS 

Dataset Panama 17-18 Panama 19-20 

Time 2017-2018 2019-2020 

Interval 1 hour 1 hour 

Electricity range (MW⋅h) [380.6, 1635.9] [85.2, 1754.9] 

Avg electricity demand 1194.0 1217.5 

Temperature [19.8, 27.8] [20.22, 39.1] 

Humidity [17.5, 90.6] [16, 100] 

Percipitation (mm) [0, 45.8] [0, 52.0] 

We use two large-scale electricity demand forecasting 
datasets collected from 
https://www.cnd.com.pa/index.php/informes-disponibles in 
four years: Panama 17-18 and Panama 19-20. The two 
datasets contain hourly electricity consumption in Panama 
country from 2017 to 2020. The detailed statistics are shown 
in Table I. External features are collected from two major 
cities (Panama and San Miguelito), including hour of day, 
week day and holiday. 
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B. Baseline 
We compare TPEDF with traditional time-series methods, 

recurrent-based methods, as well as state-of-the-art time-
series methods. 

• Historical Average (HA) predicts the future electricity 
demands by the average of previous demands. 

• AutoregRessive Integrated Moving Average ARIMA) 
[19] is a popular time-series forecasting model and has 
been used in many applications. 

• Support Vector Regression (SVR) is a variant of SVM 
for regression task [20]. 

TABLE II.  PERFORMANCE COMPARISON OF ELECTRICITY DEMAND FORECASTING WITH TPEDF AND BASELINES ON TWO PANAMA DATASETS IN TERMS OF 
RMSE, MAE, LOG 𝑝𝑝 AND CRPS. THE BEST RESULTS ARE BOLDED AND THE SECOND BEST RESULTS ARE UNDERLINED. SINCE HA AND ARIMA CANNOT MAKE 

PROBABILISTIC PREDICTIONS, WE USE N/A TO DENOTE THEIR PERFORMANCES OF LOG 𝑝𝑝 AND CRPS. 

Dataset Panama 17-18 Panama 19-20 
Metric RMSE MAE Log 𝐩𝐩 CRPS RMSE MAE Log 𝐩𝐩 CRPS 
HA 132.2 96.79 n/a n/a 123.7 86.10 n/a n/a 
ARIMA 101.5 86.05 n/a n/a 100.6 80.43 n/a n/a 
SVR 92.76 70.77 2.453 0.017 78.30 58.48 2.667 0.016 
LSTM 79.24 56.68 2.649 0.015 73.60 52.04 2.694 0.015 
GRU 80.24 57.49 2.677 0.015 74.34 51.84 2.680 0.016 
CNN-RNN 72.43 51.60 2.734 0.012 80.85 51.74 2.784 0.014 
GRU-VAE 76.04 60.24 2.727 0.013 73.74 52.18 2.675 0.015 
DSSM 64.14 43.66 2.801 0.010 71.21 51.87 2.793 0.013 
DeepAR 66.85 45.49 2.764 0.011 67.87 46.03 2.753 0.015 
PrEF 66.00 40.84 3.118 0.008 63.94 42.01 2.851 0.012 
TPEDF (ours) 51.10 39.56 3.170 0.007 54.66 38.76 3.055 0.008 

• Long Short-Term Memory (LSTM) and Gated 
Recurrent Unit (GRU) are two dominant types of 
Recurrent Neural Networks (RNN) for learning 
sequential data such as language and time-series [12]. 

• CNN-RNN [21] is a combination of RNN and 
Convolutional Neural Network (CNN) for multi-scale 
electricity load forecasting with rich features and 
electricity price. 

• GRU-VAE [22] employs a variational autoencoder 
(VAE) framework and takes the GRU as the encoding 
network. 

• DSSM [15] integrates the state space model with deep 
learning for time-series forecasting. 

• DeepAR [23] is a deep learning time-series prediction 
model based on autoregressive RNNs. 

• PrEF [1] is the state-of-the-art electricity demand 
forecasting model incorporating Copula-augmented 
SSM and RNNs for probabilistic prediction. 

C. Evaluation Metric and Experimental Settings 
We employ four evaluation metrics to verify the electricity 

demand forecasting performance of our method and baselines: 
rooted mean squared error (RMSE) and mean absolute error 
(MAE) are used to measure prediction residuals; logarithmic 
density log𝑝𝑝 and continuous ranked probability score (CRPS) 
are used to evaluate the quality of the inferred electricity 
demand distributions. The four metrics are defined as: 

RMSE = �
1
𝜏𝜏
��𝐗𝐗�𝑇𝑇+𝑡𝑡𝑒𝑒 − 𝐗𝐗𝑇𝑇+𝑡𝑡𝑒𝑒 �2
𝜏𝜏

𝑡𝑡=1

, 

MAE =
1
𝜏𝜏
��𝐗𝐗�𝑇𝑇+𝑡𝑡𝑒𝑒 − 𝐗𝐗𝑇𝑇+𝑡𝑡𝑒𝑒 �
𝜏𝜏

𝑡𝑡=1

, 

log𝑝𝑝 =
1
𝜏𝜏
�

1
√2𝜋𝜋𝜎𝜎�𝑡𝑡𝑒𝑒

𝜏𝜏

𝑡𝑡=1

exp�−
(𝐗𝐗𝑇𝑇+𝑡𝑡𝑒𝑒 − �̂�𝜇𝑡𝑡𝑒𝑒)2

2(𝜎𝜎�𝑡𝑡𝑒𝑒)2 �, 

CRPS =
1
𝜏𝜏
�� ��F�𝐗𝐗�𝑇𝑇+𝑡𝑡𝑒𝑒 � − 𝟏𝟏�𝐗𝐗�𝑇𝑇+𝑡𝑡𝑒𝑒 − 𝐗𝐗𝑇𝑇+𝑡𝑡𝑒𝑒 ���

2+∞

−∞

𝜏𝜏

𝑡𝑡=1

 

where �̂�𝜇𝑡𝑡𝑒𝑒  and 𝜎𝜎�𝑡𝑡𝑒𝑒  are the mean and variance of the 
electricity distribution, respectively. 𝐹𝐹(⋅)  is the cumulative 
distribution function of the forecasting and 𝟏𝟏(⋅)  is the 
Heaviside step function. 

We split each dataset as training (50%), validation (25%), 
and test (25%) sets, and report the best test performance when 
validation loss is not declined for 50 consecutive epochs. The 
length of the electricity demands 𝑇𝑇 is set to 48 (hours) and the 
forecasting horizon 𝜏𝜏 is set to 24 (hours), i.e., we utilize two 
days of observations to predict the hourly electricity demands 
of the next day. The latent states dimension in the state space 
model and the transformer learning module is set to 128 and 
256 for all methods, respectively.  

D. Experimental Results 
In this section, to demonstrate the superiority of TPEDF, 

we conduct an experimental performance comparison on 
electricity demand forecasting for the proposed method and 
ten baselines. The results are shown in Table II and we have 
the following observations. Specifically, traditional time-
series methods [19], [20] perform poorly and have the highest 
prediction errors compared to other baselines. Recurrent-
based neural networks such as LSTM and CNN-RNN [21] 
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have better performance than traditional methods, 
demonstrating the superior learning capability of neural 
networks. In addition, state-of-the-art time-series methods 
generally have comparable or better prediction performance 
than recurrent-based methods. This might be because they 
have more advanced learning modules on top of 
recurrent/sequential neural networks such as autoregressive 
RNNs and state space models. However, their learning 
capabilities are constrained by the recurrent architecture and 
are inefficient in capturing long-range dependencies between 
electricity demand observations and external features which 
may have a great influence on future electricity demands. In 
contrast, with the transformer-guided electricity demand 
learning module and probabilistic demand distribution 

estimation incorporated in TPEDF, we achieve significant 
performance improvements on electricity demand forecasting 
by up to 14.8% and 14.5% on Panama 17-18 and Panama 19-
20, respectively, in terms of RMSE. These promising results 
demonstrate the importance of modeling long-range time-
series dependencies and electricity demand uncertainties.  

We provide intuitive visualizations of the electricity 
demands predicted by TPEDF compared to the ground truth 
in Fig. 3. We can observe that TPEDF's prediction fits the 
ground truth well and captures the periodic variations of 
electricity demands. It is worth mentioning that the predicted 
demands are not as smooth as the ground truth lines, which 
contain small vibrations on local demand extremums. 

 
Fig. 3. Case studies on the ground-truth and prediction results of TPEDF on Panama 17-18 electricity demands. 

V. CONCLUSION 
This work presents TPEDF, a Transformer-guided 

probabilistic electricity demand forecasting framework for 
modeling the long-range dependencies of demand time-series 
and complex external features. TPEDF incorporates 
probabilistic distribution estimation for electricity demands 
and is able to handle the uncertainty of demands. We 
conducted extensive experiments on two large-scale 
electricity demand datasets, and the results show that our 
method significantly improved the performance in 
comparison to strong baselines. Future work including extend 
the model with disentangled learning [24]. 
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