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a b s t r a c t

The ability to model the information diffusion process and predict its size is crucial to understanding
information propagation mechanism and is useful for many applications such as popularity prediction
and fake news detection. Recent research works have attempted to address the problem of information
cascade prediction using two basic paradigms: (1) sequential methods, e.g., recurrent neural networks
(RNNs), and (2) graph learning techniques to retain the topological information and enable consid-
eration of structural relationships among diffusion participants. However, existing models consider
the topological and temporal features separately, falling short of simulating their entanglement in the
diffusion process. As a consequence, since the evolving directed acyclic graph (DAG) of information
diffusion is intrinsically coupled with both topological and temporal dependencies, there is a loss
of cross-domain information. In this paper, we propose a transformer enhanced Hawkes process
(Hawkesformer), which links the hierarchical attention mechanism to Hawkes self-exciting point
process for information cascade prediction. Specifically, we extend traditional Hawkes process with
a topological horizon and efficiently acquire knowledge from continuous-time domain. A two-level
attention architecture is used to parameterize the intensity function of Hawkesformer. At the first-
level, we disentangle the primary and non-primary paths to simulate the coupled topological and
temporal information for capturing the global dependencies between the nodes in a graph. At the
second-level, a local pooling attentive module is proposed to embed the cascade evolution rate for
modeling short-term outbreaks. Extensive experiments on two real-world datasets demonstrate the
significant performance improvements of Hawkesformer over existing state-of-the-art models.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Sharing content through social media platforms such as Twit-
er, Facebook, and Weibo has become the main channel for
xpressing individuals’ opinions and reactions regarding various
‘everyday’’ topics. This trend, in turn, has brought an unprece-
ented convenience for generating, delivering and propagating
nformation items, along with vast volumes of data describ-
ng how the information was spread. The initial information
e.g., tweet), along with the subsequent resharing (e.g., retweet)
orm an information cascade representing what is commonly
eferred to as information diffusion process [1,2]. A similar phe-
omenon has been identified in other (non-social media)
ettings: paper citations [3], blogging space [4,5], and email for-
arding [6]. A large number of user sharing behaviors contributes

∗ Corresponding author.
E-mail addresses: liu.yu@std.uestc.edu.cn (L. Yu), xovee@ieee.org (X. Xu),

ocet25@iastate.edu (G. Trajcevski), fan.zhou@uestc.edu.cn (F. Zhou).
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950-7051/© 2022 Elsevier B.V. All rights reserved.
to the rapid and massive dissemination of information. Predicting
the size of an information cascade after a certain time-period
brings enormous economic and social values in many down-
stream applications such as advertising, influence maximization,
misinformation and hate speech reduction [7–12]. The retweet
records of an information cascade are not simplified sequential
events but are equipped with an underlying diffusion topology,
often captured via directed acyclic graph (DAG). The core chal-
lenge of information cascade prediction is how to model the
underlying diffusion process governing the popularity dynamics
of information cascades.

Existing information cascade prediction models fall into three
main categories: (1) Feature-Engineering approaches [13–15] ex-
tract and compute a large number of hand-crafted factors such as
basic user features, content features, temporal/structural features.
The main bottlenecks of feature-based methods are generaliz-
ability and privacy concerns. Features identified by experts and
domain knowledge can only apply to certain platforms or partic-
ular type of information. On the other hand, features of users are
often unavailable due to privacy policies, limiting the scalability
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Fig. 1. Top: Information cascade diffusion process as a directed acyclic graph
DAG)—with the coupled temporal and topological dependencies. Bottom: An
xample of a cross-dependence problem in separate modeling.

f the models. Many researchers [13,14,16] summarized that
emporal and topological features are the most effective, e.g., the
rrival rate, time intervals, retweet relationships. (2) Probabilis-
ic Generative approaches aim to model the event occurrence
y classic examples of temporal point processes (TPPs), includ-
ng Poisson process [17] and Hawkes self-exciting process [18].
hese processes are used to simulate/reproduce the cascade diffu-
ion mechanism—however, they often underestimate or simplify
he complex underlying mechanisms governing the success of
nformation cascades [15,19]. Despite their efficiency and en-
anced interpretability, conventional generative models are less
owerful in making precise predictions. (3) Deep Learning-based
pproaches learn the complex diffusion mechanisms with deep
eural networks, which have millions of parameters that can be
pdated by gradient-descent algorithms. Recurrent neural net-
ork (RNN) based sequential models are utilized to capture the
emporal dependencies among cascade events [20,21]. Structural
haracteristics, in contrast, are often modeled by graph neural
etworks (GNNs) and graph learning techniques [22–24].
Although the aforementioned methods have achieved signif-

cant improvements in information cascade prediction, they ex-
ibit four notable drawbacks: (i) Feature-based models explore
eature-sets extracted from content, structure, time-series, and
asic profile from the users. Nevertheless, they rely on extensive
and-crafted feature engineering that cannot be generalized from
ne domain to another and are not easy to implement [25].
ii) Probabilistic generative models simplify the arrival rate of
vents, e.g., exponential or power-law functions, and make strong
ssumptions on the diffusion mechanisms in the cascaded events,
imiting their learning power on large-scale cascade data. (iii) Re-
ent deep learning-based methods focus more on static temporal
ascade diffusion within specific snapshots in the discrete-time
omain. Little attention has been paid to the whole evolution
rocess and fully exploiting all cascade dynamics. For instance,
n [26,27] the authors learned topological–temporal dependen-
ies in isolation, losing cross-domain information, see Fig. 1. (iv)
onventional methods for cascade prediction face the challenge
f data imbalance impact. The long-tailed distribution of cascade
izes hinders the training process and degrades the prediction
erformance.
To tackle the aforementioned limitations of the existing

odels, in this work, we present Hawkesformer (Transformer-
nhanced Hawkes process). Essentially, it links two-level atten-
ion modules in a hierarchy to parameterize the intensity function
f self-exciting Hawkes point process. The intensity function
odels the coupled temporal and topological dependencies of

ascades in the continuous-time domain. At the first level, we s

2

design a global dependency module to dynamically capture the
long-term diffusion process of past events in cascade, where
we make a primary/non-primary path assumption to adaptively
integrate the diffusion process on the underlying DAG. This also
enables each node attending the cascade at any position to update
its current hidden states. At the second level, we design a local
pattern module that considers the short-term evolution rate of
an information cascade and encodes the local representation in
a time-slice window, which extends self-attention by noticing
the local fluctuations. In addition, the decoupling training of
representation extractor and regressor allows us to avoid the
predictions skewed by instance-rich data when jointly training
the whole network.

Our main contributions can be summarized as follows:

• We present Hawkesformer, a deep information diffusion
learning model that learns the coupled temporal and topo-
logical features of information diffusion in the continuous-
time domain. It extends the traditional Hawkes process with
a topological horizon and can efficiently acquire the coupled
knowledge for information popularity prediction.

• We propose a two-level attention architecture that parame-
terizes the intensity function of traditional Hawkes process,
which first uses a global dependency module to capture
the long-term diffusion between nodes in dynamic diffusion
topology, and then leverages a local dependency module to
capture the short-term evolution rate in a fixed time-slice.

• We customize a learnable position-wise user embedding
method for unattributed information DAGs, bringing high
parameter efficiency and faster computation and leveraging
decoupled training scheme from [28] to cope with the
long-tailed distribution in cascade sizes.

• Extensive experimental evaluations on three real-world
datasets show that Hawkesformer outperforms nine state-
of-the-art baselines from three paradigms. Ablation stud-
ies and visualizations are also provided to demonstrate its
effectiveness and interpretability.

In addition to the greatly enhanced experimental evaluations
nd discussion of the relevant literature, the present work also
xtends the results in [28] (which focused on the impact of long-
ailed distribution on the training) with two novel aspects: (1)
new architecture to capture both long-term and short-term
ependencies; and (2) an augmented and learnable embedding
pproach to increase efficiency and performance.
The rest of this paper is organized as follows. Section 2 re-

iews the related literature and positions the contributions of
awkesformer. Section 3 introduces the preliminaries of the in-
ormation cascade popularity prediction problem. In Section 4, we
resent the details of our solution for information cascade predic-
ion. We report the main results, ablation study and visualization
esults in Section 5. We conclude our work and point out future
irections in Section 6.

. Related work

In this section, we first review the related literature on in-
ormation cascades and discuss their relations to our proposed
awkesformer model. Since our main focus is on information cas-
ade popularity prediction with unattributed DAG, the proposed
odel mostly relates to the Hawkes process built on attention
eural network—which is why we present a more detailed review
f the related literature from those two domains in separate

ubsections.
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.1. Information cascade popularity prediction

Modeling information cascades and predicting information
iffusion in social (as well as other kinds of) networks have
een studied extensively in recent years [1,29]. Macroscopic,
esoscopic, and microscopic approaches [1,2,30,31] have been
roposed for a range of practical downstream prediction tasks
uch as popularity prediction [20], rumor detection [32], outbreak
rediction [33], user activation prediction [34], and social influ-
nce locality [35]. In this work, we mainly study the information
ascade popularity prediction problem, i.e., given an information
ascade, we predict its future size (macroscopic) by observing its
arly stage condition.
Initial studies of information cascade prediction have explored

arious kinds of features with respect to the related information
n cascade diffusion. They rely on machine learning algorithms
o connect cascade popularity with many hand-crafted features,
ncluding but not limited to content, diffusion topology, user
rofiles, and event time-series. For example, four types of de-
erminants of cascade popularity are extracted in [15]: (a) basic
ser features; (b) temporal features; (c) volume features; and
d) past user success—which are modeled by a Random Forest
egressor. The findings reported that user-related features and
emporal activity features perform competitively in popularity
rediction. However, many proposed specific context features
nd private user profiles are either data-source specific or rely
n information that is not publicly available, which requires
anual effort and extensive human domain expertise, limiting
uch models’ scalability. Examples of context-specific features
nclude topics or hashtag content [36], propagation network mea-
urements [37], and sophisticated features relating to audience
ehavior [38]. Many researchers [13,14,16,39] also concluded that
emporal features and structural/topological features – e.g., the
arrival rate, time interval, retweet relationship – are the most
effective predictors.

Another body of works relies on probabilistic generative mod-
els, describing the diffusion process as an event sequence to
capture the temporal dynamics of information diffusion. Notably,
the family of temporal point processes (TPPs) has been exten-
sively studied in the literature, among which Hawkes point pro-
cess [18,40] and Poisson point process are dominant examples.
They incorporate different endogenous and exogenous factors to
model the conditional intensity functions. A double stochastic
process was employed in SEISMIC [19] to account for infectious-
ness and the arrival time of events in microblogging network, and
a reinforced Poisson process with the ‘rich-get-richer’ mechanism
was utilized in [3] to track the citation dynamics of a cascade.
Some of works [15,41] discussed the combination of Hawkes
process and three important factors (user influence, decaying
social attention and content quality) for social network pop-
ularity prediction. Time-Dependent Hawkes process [42] takes
into account the circadian nature of the users and the aging
of the information, and predicts a popularity curve evolving in
time and Hawkes intensity process [43] supplies the missing link
between external promotions and inherent factors to explain the
complex popularity history, etc. [44] propose a dual mixture self-
exciting process to jointly model the separable content virality
and influence decay of cascades, which directly characterizes
the spread dynamics of online items and supplies interpretable
quantities for predicting the final content popularity. Although
such methods have gained success and are highly interpretable
in certain contexts, their capacity for modeling large-scale data
and the simplifying assumptions for the underlying diffusion
processes constrain the practicality and expressiveness of the
models. Moreover, they lack a description of the cascade diffusion
structure (i.e., DAGs), which is important for fully exploiting the

whole cascade dynamics [21].

3

Recently, inspired by the success of deep learning in various
real-world applications, researchers have explored deep learning-
based models to improve the performance of information cascade
prediction. Deep neural networks – which do not require special
assumptions regarding cascade diffusion mechanisms and can
be trained in an end-to-end manner – are capable to learn-
ing and representing massive event data with less reliance on
model selection. Recurrent neural networks (RNNs) and graph
neural networks (GNNs) are most common tools to characterize
temporal and structural information embedded in the diffusion
process. Extensive works combined the temporal sequence and
information cascade graph within snapshots for prediction. For
example, DeepCas [20] and TempCas [45] proposed heuristic
strategies to sample cascade path as input sequences to RNNs.
DeepHawkes [46] is the first attempt to combine Hawkes the-
ory with deep neural network. It borrows the interpretable fac-
tors from Hawkes process to model the self-exciting mechanism
by feeding cascade paths into RNNs. However, sequential mod-
els cannot fully exploit the structural dynamics of information
diffusion with underlying DAGs.

Graph-based models such as CasCN [27], CasSeqGCN [47] and
VaCas [26], used node or graph embedding techniques, e.g., spec-
tral graph wavelets [48] and graph convolutional networks [49],
for obtaining the structural representations of cascade graph.
They also employed RNN-based modules to capture the temporal
dependencies of cascade events. However, temporal and spatial
features are captured separately, which cannot intuitively and
effectively simulate the whole diffusion process, losing cross-
domain information. First, training long sequence of events with
RNNs is notoriously difficult because of gradient explosion and
vanishing, which hinders the model for capturing the long-term
dependencies between cascade events and mapping the cascade
events into continuous-time domain [26,45,50]. Second, GNN-
based models make up for the lack of retweeting relationship
(structural information) of RNN-based sequential models, which
enforces many redundant dependencies, e.g., CasCN [27] apply
convolutional operation on a sequence of sub-graphs, which is
computationally intensive and indirect for modeling the cas-
cade diffusion process. Consequently, those particular downsides
plus the increased computational burdens make these models
inefficient. Several other deep learning techniques such as re-
inforcement learning [51], attention mechanism [20,52,53], and
auto-encoder [26,54] are also used for information cascade pre-
diction. Instead of solely depending on observed information
cascade, the work [55] relies on parameters that fit previous sim-
ilar cascades and infers new parameters accordingly. As a result,
it can predict the final cascade size and shape with few observa-
tions. They found that as more observation data become available,
the performance of predictions tends to improve with time. Other
works try to solve specific problems inherent in cascade learn-
ing, such as generalization capability [56] and long-tailed data
distribution [28], etc.

For a comprehensive review of the recent advances in in-
formation cascade prediction, the reader is referred to [1,2,29,
30]. We note that what separates the present work from the
existing results is that we introduce a novel approach for cou-
pling the temporal and structural information and tackle both
long-term and short-term predictions which, as demonstrated
by the experimental observations (cf. Section 5), yield significant
improvements.

2.2. Hawkes point process

Temporal point processes (TPPs) provide an elegant mathe-
matical tool for modeling event occurrences in the continuous
time domain. The self-exciting Hawkes point process [18] so far
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as been a dominant point process in both theoretical stud-
es and real-world applications [57]. Recently it spaned a wide
ange of applications such as finance [58] and bioinformatics [59],
riminology [60], and social science [15,19,61], to name a few.
Hawkes-based models view individual broadcasts of informa-

ion as events in a stochastic point process, and the triggering
ntensity can be calculated based on the activation time interval.

Traditional Hawkes Processes. They can be divided into two
ategories: parametric and nonparametric [62]. The parametric
odels [15,63] suffer from model mis-specification if the manu-
lly pre-specified intensity function does not fit the actual event
ehavior. Its intensity function is a classic additive form defined
s:

(t) = µ +

∑
j:tj<t

φ(t − tj), (1)

where µ ≥ 0 is the base intensity and φ(·) denotes an exci-
tation term, which is devised as a tailored function for tailored
model. Choices for the excitation function include parameterized
exponential or power-law functions. Here, Eq. (1) makes a strong
assumption that historical excitation is positive and additive over
past events, which might be simplified in the (complex) real
world. As for the nonparametric models [64], although they do
not have an explicit specification on intensity function and have
a higher data capacity, their learning algorithm can be math-
ematically more complex [62], preventing them from adoption
by practitioners. In sum, traditional TPP-based models excel at
clear interpretation on the problem for learning and fitting the
data. This, however, is a simplification that may overrate the
cascade size owing to its self-exciting mechanism or underrate
the cascade size due to its time decay mechanism.

Variants of Hawkes Process. With the fast development of deep
learning theory and techniques, a notable trend is resorting to
the neural network based approach for modeling more flexible
TPPs. We name it neural point process, which distinguishes itself
from the traditional point process. Specifically, recurrent neural
network and its variants, e.g. long-short term memory (LSTM)
were utilized in [61,65] to build network blocks, which can be
learned in an end-to-end manner with no need for devising
tailored intensity functions and learning algorithms that required
in traditional TPPs. For example, the intensity function of Neural
Hawkes Process (NHP) [65] is defined by:

λ(t) = f (w⊤h(t)),

f (x) = β log
(
1 + exp(

x
β
)
)
,

(2)

where h(t) is the hidden states encoding the event history ob-
tained by a continuous-time LSTM. A softplus function f (·) with
parameter β guarantees a positive intensity. One notable limita-
tion of those RNNs-based model is unable to capture complex
long-term dependencies [66]. Hence, inspired by the develop-
ment of natural language processing field, several attention-based
models (e.g., THP [67], SAHP [68]) have emerged in TPPs to
address this issue. UTHP [69] introduces RNN in the encoding pro-
cess and CNN in the position-wise feed-forward neural network
to overcome the problems in THP, including parallel process-
ing, recursive learning, and abstracting local salient properties.
As THPs do not effectively utilize the temporal information in
the asynchronous events, TAA-THP [70] modifies the traditional
dot-product attention structure and incorporates the temporal
encoding into the attention structure. Their two key advantages
are that those neural point processes free the need for explicit
parametric intensify form selection and can efficiently perform
using off-the-shelf solvers (e.g., stochastic gradient descent) and
tools in an end-to-end manner.
4

However, they are only capable of modeling simple event
streams on the next activated user prediction task and thus can-
not be applied to dynamic DAG structures that we are considering
in this work.

2.3. Attention mechanism

Attention mechanism was originally used in neural machine
translation (NMT) [71,72], which enables NMT models to focus on
a subset of the input sequence. Self-attention is a special case of
the attention mechanism recently proposed in Transformer [66],
which has been broadly applied in a variety of NLP tasks such
as machine translation [73] and language modeling [74], yielding
considerable improvements. The usage of Transformer is also
common in computer vision in recent years [75].

Essentially, it encodes sequences of input tokens by relating
these tokens to each other, and the input consists of queries,
keys (dimension is dk) and values (dimension is dv). In practice,
in order to implement them by using highly optimized matrix
multiplication, the queries, keys, and values are packed together
into matrices Q , K , and V . The matrix form of the attention
function is:

Attention(Q , K , V ) = softmax
(
QK T

√
dk

)
V (3)

Self-attention computes the dot products of the query with all
keys, divides each by

√
dk, and applies a softmax function to

obtain the weights on values. It measures the dependency be-
tween each token pair from the same input sequence. Since
self-attention contains no order of the sequence, a positional en-
coder is used to encode the absolute position of the tokens in the
sequence. Consequently, self-attention encodes both token de-
pendency and positional information. For RNNs, single-layer and
two-layer architectures are the most common types. However,
they may fail to model more intricate dependencies among data.
On the contrary, the non-recurrent structure of self-attention
facilitates efficient training of multi-layer models. Transformer-
based architectures can be as deep as dozens of layers [73,74],
which enables capturing higher order dependencies and makes
them more powerful than RNNs. Moreover, the self-attention
mechanism has faster convergence than RNNs.

Despite its success ranging from natural language processing
and computer vision [76], to graph neural network [23], it has
rarely been used in other areas. We remark that the Transformer
architecture cannot be directly applied to model temporal point
processes within diffusion DAGs. Specifically, it does not consider
the dynamic diffusion topology. Moreover, time intervals be-
tween any two events of a cascade can be arbitrary (irregularly),
while for languages, words are observed on regularly spaced time
intervals. Therefore, we need to generalize the architecture to a
continuous-time domain while considering the dynamic diffusion
DAGs, which is what separates the current work from the existing
results.

3. Preliminaries

We now introduce the basic terminology and settings, provide
a formal definition of the problem, and discuss some context and
assumptions. We note that, for convenience, a list of symbols
used throughout the paper, along with their concise definitions,
is provided in Table 1. In the rest of this study, we consider
tweet cascade as an example-setting; however, we note that our
approach is applicable to other types of information cascades,
e.g., academic publications, news articles, online forums, video,
and streaming media, etc.
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Table 1
Frequently used symbols and their definitions.

Notation Interpretation

I Information item, e.g., tweet, news, or research paper.
uj, tj Current user and retweet timestamp.
to, tp Observation time (to = tL), prediction time.
L Number of events in the observed period. L = max(j)
λ(t) Conditional intensity – or event rate at time t – omit history H for

conciseness.
Ck(t) The kth information cascade observed at time t .
Hk The history of kth cascade within observation time.
st The sequence of event timestamps up to but not including time t .
D Dimensionality of embedding.
N Number of cascades.
U A learnable shared matrix for position-wise embedding.
V The set of all position-wise user indices.
Z Temporal encodings matrix.
X User retweet embeddings; X = UV + Z
H,h(tj) The hidden state of the first level, i.e., global dependency of current node uj;

H consists of h(tj)
Υ , υ(tj) The hidden state of the second level, i.e., local dependency of current node uj;

Υ consists of υ(tj)
V All predecessor nodes of current node uj .
VP ,VN Nodes on the primary/non-primary path, respectively. V = VP

+ VN

Pscore , Nscore Primary/non-primary attention scores.
A The dependency attention probability matrix, including attention from

primary/non-primary path.
MP , MN Matrices used to retain the attention scores of nodes on primary/non-primary

paths, respectively.
yk(tp), ŷk(tp) Ground truth and predictive popularity at prediction time tp .
Let I be an information item diffused in a network. Consider
Twitter user u0 who posts a tweet I at time-stamp t0. Later,
ther users see this tweet (through the user feed, searching, or
ecommendation) and interact with I , e.g., ‘‘commenting’’, ‘‘lik-
ng’’, and ‘‘retweeting’’. In this paper, we consider ‘‘retweeting’’
s the major source of information diffusion in the Twitter social
etwork.
Given a tweet I where a user u0 starts it at t0, we denote all its

retweets during a period of time as an information cascade CI , con-
sisting of retweet history HI = {(tj, vj, uj)}Lj=1, where tj ∈ (0, to]
and L is the total number of retweets during the observation win-
dow (t0, t0 + to]. For each pair (tj, vj, uj), user uj retweets user vj’s
retweet (or the original tweet I) at time-stamp tj. Here vj belongs
to one of the users in {u0, u1, . . . , uj−1}. For example in Fig. 2,
HI consists of five retweets: {(t1, u0, u1), (t2, u0, u2), (t3, u1, u3),
(t4, u1, u4), (t5, u3, u5)}. Now we give the formal definition of
information cascade popularity prediction:

Definition 1 (Information Cascade Popularity Prediction). Given ob-
served retweet history HI of information cascade I at observation
time to, we predict its size (popularity) ŷI (tp), i.e., the number of
users who perform the retweeting action to the original tweet I
after observation time to and before prediction time tp ≫ to.

Overall, recall that for N observed cascades (e.g., N tweets)
{Ck}1≤k≤N , the popularity prediction can be formalized as a com-
plex and nonlinear regression task solved by minimizing the
following loss function:

L(Θ) =
1
N

N∑
k=1

(ŷk(tp) − yk(tp))2,

ˆk(tp) = ModelΘ (Hk),

(4)

here yk(tp) is the ground truth popularity for cascade Ck at
prediction time t , and Θ are model parameters.
p

5

Fig. 2. An example of information cascade.

In the scenario of cascade prediction, each cascade gener-
ally corresponds to a directed acyclic graph (DAG) representing
the information diffusion—and causing cross-dependence in cas-
cades. In other words, a particular retweet behavior could be
triggered by its non-immediate predecessor in the memory chain.
As shown in Fig. 2, the retweet behavior of u2 depends on u0
rather than its immediate predecessor u1. Every time a new
retweeting behavior occurs, the underlying diffusion structure
updates. Thus the diffusion DAGs are associated with the coupled
topological–temporal dependencies, which cannot be captured by
chain-structured sequential models (like RNNs).

Global and local dependencies. We note that predecessor nodes
may either promote or inhibit the occurrence of successor nodes.
Thus we consider all the predecessor nodes as the global de-
pendency of the current node, where these predecessor nodes
may be located far away from the current node in the memory
chain. Since many previous works [2,9,45] have shown that the
local dependency (e.g., short-term outbreaks) is important for
predicting the future size of information cascade, it is necessary
to encode the local dependency.

Primary and non-primary assumption. Information cascade graphs
have many distinct (sub-)structures [77]. Some of them are based
on simple broadcast propagation, while others have hub struc-

tures and deep depth. We hypothesize that hub nodes (nodes
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n primary path) are more important for the diffusion process
han the, so called, leaf nodes (nodes on non-primary path) which
re relatively less impactful. We note that many existing works
epresent cascade structures with similar strategies, e.g., in Deep-
as [20] and SI-HDGNN [78] the transition probabilities are as-
igned by node degrees to sample the critical paths that cover the
ost influential nodes; in TempCas [45] the root node is fixed as

he starting node that obtains the full cascade paths and can cover
ore successor nodes.

. Model

In this section we present the details of our proposed ap-
roach. We start with a global overview of Hawkesformer. Next,
e discuss in detail the four critical components to capture the
oupled structural and temporal information with evolving directed
cyclic graph structure over time in Hawkesformer, which are:
i) learnable user embedding method and a temporal encoding
lock; (ii) path-aware attention module to learn the global depen-
encies among past cascade events; (iii) pooling attention module
o learn the local patterns; and (iv) fully connected predictive
layer consists of expected popularity (the integral of TTP over
time) and topological hidden state. We finalize the section with
a complexity analysis.

4.1. Transformer enhanced Hawkes process

In order to capture the global dependencies and local pat-
terns of the entire information cascade, we design a Transformer
Enhanced Hawkes Process (Hawkesformer), the architecture of
which is illustrated in Fig. 3. In essence, it links a two-level
attention framework to parameterize the intensity function of
Hawkes process. Hawkesformer is expressive and flexible for
both global and local dependencies and it captures the coupled
spatial–temporal dynamics from continuous-time domain. We
characterize the global dependence as h(t) and local patterns as
υ(t). Given an information cascade Ck and its retweet history
Hk = {(tj, vj, uj)}Lj=1. Let stj = {t0, t1, . . . , tn | tn < tj} be the
sequence of time stamps up to but not including time tj – we
model the continuous dynamics of temporal point process with
the following conditional intensity function:

λ(t|Θ, stj ) = f
(
α
t − tj
tj  

current

+ w⊤

1 h(tj)  
global

+ w⊤

2 υ(tj)  
local

)
(5)

where Θ denotes the model parameters; retweet time t is defined
on interval [tj, tj+1); and f (x) = β log(1 + exp(x/β)) is the
softplus function, with ‘‘softness’’ parameter β to constrain the
intensity function to be positive. The first term current indicates
the evolutionary process in the continuous-time domain; w1, w2
are learned weights for global dependency and local patterns at
time t , respectively, and λ(t) denotes the tweet arrival rate at a
given time t . We set the base intensity µ = 0 in Eq. (1) since all
retweets are considered spawning from the original tweet. Note
that different from traditional additive form in Eq. (1), the arrival
rate λ(t|Θ, stj ) in Hawkesformer provides learnable influences of
all the predecessor to each current node.

4.2. User embeddings

An important component of Hawkesformer is the user em-
beddings, which is different from the existing models which
learn static node embeddings and only preserve topology prox-
imity [48,79], or utilize a learnable global user matrix which
is computationally intensive [46]. Specifically, we propose an
6

efficient position-wise embedding method. Inspired by word em-
bedding techniques [73] in NLP, we train a shared embedding
matrix U ∈ RD×L where the jth column of U denotes the D-
dimensional embedding for jth retweet user in each cascade,
i.e., the same positional nodes in each cascade share an em-
bedding. This greatly reduces the computational overhead and
makes our model more efficient. The matrix U is randomly ini-
tialized and it dynamically updates subsequent contextualized
embeddings with respect to the underlying cascade. The global
dependency module (cf. Section 4.3) dynamically adjusts the ini-
tial user embedding based on the contextual node position in
the graph structure, no matter where the nodes are located in
the cascade structure (e.g., hub or leaf nodes). For a retweet user
uj in the jth position, if we let vj denote the index vector of uj,
then its position-wise embedding is indexed by Uvj. Here V =

[v1, v2, . . . , vL] ∈ RL×L is the collection of user one-hot indices.

Temporal encodings. The key ingredient of our proposed
Hawkesformer is a two-level attention framework, which is specif-
ically designed for information cascade graph prediction tasks.
Since the attention mechanism discards the sequential depen-
dency of RNNs and all tokens of the input sequence are fed into
the network with no special order or position. We character-
ize the temporal information by utilizing a temporal encoding
pattern, which is analogous to the ‘‘vanilla’’ absolute positional
encoding [66] for each node in cascade. We denote this temporal
encoding pattern as z, which is defined as:

[z(tj)]i =

{
cos

(
tj/10000

i−1
D

)
, if i is odd

sin
(
tj/10000

i
D
)
, if i is even

(6)

Here we utilize a trigonometric function to define the temporal
encoding z

(
tj
)

∈ RD for each timestamp tj, where D is the
encoding dimension. The subscript i of [z(tj)]i is the index of the
encoding dimension, where i ∈ [1,D]. Thus, the embedding of
the retweet sequence H is specified as X = UV + Z, where UV
are position-wise embeddings of all users in the cascade, Z =

[z(t0), z(t1), . . . , z(tL)] ∈ RD×L is the concatenation of temporal
encodings. Each column of X = [x(t0), x(t1), . . . , x(tL)] ∈ RD×L

orresponds to the initial embedding of a specific user in the
ascade. Note that our initial user embedding X is composed
f a learned position-wise embedding UV and a fixed temporal
ncoding Z.

.3. Modeling global dependence by self-attention mechanism

The global dependence of an information cascade can be re-
arded as an indication of who (i.e., which user) could possibly in-
ect or inhibit whom (i.e., another user) in the long-term diffusion
rocess. After obtaining the initial user and temporal embeddings,
e propose a path-aware attention module to parameterize the
awkesformer intensity function, which allows us to capture the
ong-term diffusion dependencies among input cascade events
nd extract the coupled topological–temporal dependency-aware
ser features.
As signified by the Hawkes process, the final popularity of

n information cascade is related to the past participation of
sers, which means that predecessor users influence not only its
mmediate retweeters but also non-immediate retweeters by way
f transitivity. We rely on self-attention as a desirable tool to cap-
ure these long-term coupled topological–temporal dependen-
ies. To represent the influence of predecessor nodes on cascade
uture popularity from a topological view, we remark that for the
urrent node uj, all the predecessor nodes V = {u1, u2, . . . , uj−1}

re divided into two types (as discussed in Section 3): nodes on
he primary path VP

= {a1, a2, . . . , ap} ⊂ V , which includes all
he nodes on the entire retweet path from the current node u
j
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Fig. 3. Overview of our proposed Hawkesformer.
w

a
E

Fig. 4. Primary and non-primary paths in the global dependencies for a cur-
ent node u4 . Purple (respectively, gray) dots denote nodes on the primary
respectively, non-primary) path.

ack to the root node u0; and other nodes in non-primary path
N

= V − VP
= {b1, b2, . . . , bn}. We consider the current node uj

raced from root node as primary path VP which contributes the
ost to the arrival time at uj. On the contrary, the nodes on the
on-primary path VN have relatively small contributions to uj, but
lso have an impact on final popularity. An illustrative example is
hown in Fig. 4 where, for the current node u4, the purple nodes
ndicate the primary path and the gray ones are the nodes on the
on-primary path.
Based on the above interpretation, a long-term dependency

odule is employed to deal with each input user in the informa-
ion cascade. Given the current node uj, we obtain the long-term
ependency attention score for user al ∈ VP in the primary path
s follows:

lj =
exp(⟨al, x̃j⟩)∑p

l=1 exp(⟨al, x̃j⟩) +
∑n

m=1 exp(⟨bm, x̃j⟩)
, (7)

where a, b and x̃ are the vectors of the users’ corresponding
embeddings from X after being transformed by primary query
matrix WP

∈ RD×D, non-primary query matrix WN
∈ RD×D, and

key matrix WK
∈ RD×D, respectively. Function ⟨·, ·⟩ is the inner

product. The transformation matrices are utilized to differentiate
the user’s roles in unidirectional dependencies. Similarly, the

N
long-term dependency attention score αmj from a user bm ∈ V p

7

in non-primary path is defined as:

αmj =
exp(⟨bm, x̃j⟩)∑p

l=1 exp(⟨al, x̃j⟩) +
∑n

m=1 exp(⟨bm, x̃j⟩)
. (8)

Now we have the complete diffusion dependency ej for user
uj, computed via the following attention weighted sum:

ej =

p∑
l=1

αljx̂l +
n∑

m=1

αmjx̂m. (9)

where x̂ is the vectors from X after being transformed by value
matrix WV . So the diffusion dependency for all nodes is: E =

{e0, . . . , ej, . . . , eL}. The aforementioned long-term dependency
attention process for a specific node u4 is illustrated in Fig. 4. We
can observe that unlike RNNs-based models which sequentially
obtain compressed states of historical users, our attention-based
module enables each user attend the information cascade at any
position to update its current hidden state.

Since dependency attentions are computed independently for
each user, the computation of primary attention scores Pscore and
non-primary attention scores Nscore can be paralleled as matrix
multiplication:

Pscore = (WPX)⊤(WKX) ⊙ MP ,

Nscore = (WNX)⊤(WKX) ⊙ MN ,
(10)

where MP , MN
∈ RL×L are matrices used to retain the attention

scores of nodes on primary and non-primary paths, respectively.
The element MP

i,j = 1 if ui ∈ VP else 0. Similarly, MN
i,j = 1 if

ui ∈ VN else 0.
To avoid ‘‘data leakage’’ issue, we use a masked matrix M ∈

RL×L in the attention module where the element Mi,j = 0 if
i < j otherwise Mi,j = −∞. Like most attention mechanisms, we
leverage softmax function to derive the probability distribution.
Finally, the dependency attention probability matrix is derived as:

A = softmax
(Pscore + Nscore

√
D

+ M
)
, (11)

here D is the dimension of the input embedding. The masked
matrix M forces the softmax function to assign valid long-term
dependency attentions only over uj’s previous retweeters and
ssign 0 to subsequent users (i.e., users activated later than tj).
ach column vector αj in A represents uj’s attentions over its
revious states including primary and non-primary path. Then the
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Fig. 5. The implement details of primary and non-primary assumption.

inal matrix form of contextualized embeddings for an informa-
ion cascade can be obtained by E = (WVX)A. The whole matrix
computing process of global dependency is illustrated in Fig. 5.

To learn more semantic information, we map multiple heads
to different subspaces, which can be run in parallel using matrix
multiplication. We compute multiple heads E1, E2, . . . , EH and
hen concatenate them to the final E:

= WO Concat (E1, E2, . . . , EH) , (12)

here WO
∈ RD×HD is an aggregation matrix. To learn higher-

level retweet representations, the output E is then fed through
fully connected networks. Formally,

H = WFC
2 ReLU(WFC

1 E + b1) + b2,

h(tj) = H(:, j),
(13)

here WFC
1 ∈ RDF×D,WFC

2 ∈ RD×DF , b1 ∈ RDF , b2 ∈ RD are
arameters of the neural network, h(tj) is the representation of
ser uj related to long-term dependency, and each column of

∈ RD×L corresponds to a particular retweet. In practice we
tack multiple long-dependency modules together, and inputs are
assed through each of these modules sequentially. In this way
ur model is able to capture high level dependencies.

.4. Modeling local patterns with pooling attention

The acceleration of retweets number in information cascade is
ot stable and short-term outbreaks in the diffusion process has
great impact on the final popularity. To better embed the evo-

ution rate of information cascade, we utilize a pooling attention
odule to parameterize the intensity function of Hawkesformer

or capturing the local patterns.

ooling operation on local patterns within time-slice. Based on
he learned dependency-aware user representation described in
ection 4.3, for each current user uj in one cascade, we perform
pooling operation on its local pattern, which composed of the
urrent uj and predecessor users within a time-slice window ts.
pecifically, we firstly formalize ϑ = {ϑ(t0), . . . ,ϑ(tj), . . . ,ϑ(tL)}
s a collection of all local patterns of an information cascade. Each
ocal pattern ϑ(tj) is composed of hidden states within a time-
lice in Eq. (13), i.e., ϑ(tj) = [h(tj − ts); . . . ;h(tj)]. Note that ts

s a fixed value, and each current node uj has its corresponding

8

ocal pattern ϑ(tj). And then for each current node uj, we generate
new representation h̃tj by conducting a pooling operation on
(tj) to aggregate the features in a time-slice ts. Hence, the total
ooling representations of all local patterns ϑ can be formalized
s:

:= Pool([ϑ(t0); . . . ; ϑ(tL)]), (14)

here H̃ = {̃ht0 , . . . , h̃tL} and each column of H̃ corresponds to
he pooling representation of its local pattern.

erging evolution of local patterns with masked attention. To merge
he impacts of local patterns, which capture the evolution rate
elated to rise/fall behavior, we stack an attention layer. Masked
ttention mechanism is applied to dynamically aggregate the
ocal pattern embeddings before the current time tj. The input of
he attention layer is the pooling representations of local patterns
. For jth local pattern, a hidden vector is generated to summarize
he evolving process of all previous patterns:

(tj)=

∑j−1
i=1 f (h̃ti , h̃tj )g(h̃tj )∑j−1

i=1 f (h̃ti , h̃tj )
, (15)

here Υ = {υ(t1), . . . ,υ(tj), . . . ,υ(tL)} is a collection of local
ependencies of evolving rate, g(·) is a linear transformation
unction. The similarity function f (·, ·) is specified as:(
h̃ti , h̃tj

)
= exp

(
h̃ti h̃

T
tj

)
. (16)

.5. Prediction and optimization

Having obtained the global and local dependencies from two-
evel attention-based framework in Sections 4.3 and 4.4, we
onstructed a stronger model Hawkesformer with richer coupled
opological–temporal information. The two-level transformer-
ased framework can be used to model the cascade diffusion
GAs. TPP provides a principled treatment by directly absorbing
he raw timestamp such that the time information is accurately
ept. We combine those topological hidden states and temporal
oint process for popularity prediction, which extend Hawkes
rocess with a topological horizon in continuous-time domain.
ext, we proceed with the detailed optimization and prediction
rocesses.

.5.1. Prediction
Given an information cascade Ck and its retweet history Hk =

(tj, vj, uj)}Lj=1 over an observation window (t0, t0 + to], let st =

t0, t1, . . . , tn | tn < t} denote the sequence of event times
efore current time t . Recall that its conditional intensity function
(t|Θ, stj ) was specified in Eq. (5). According to the Hawkes
heory, the survival function at time t is defined as:

(t | st ) = exp(−
∫ t

tn
λ(τ )dτ ), (17)

here the conditional probability indicates that no event occurs
n the window [tn, t]. Then, we can further derive the likelihood
f observing an event at an arbitrary time t ′ (t ′ > to) using:

(t ′ | st ) = λ(t ′ | st )S(t ′ | st )

= λ(t ′ | st ) exp
(
−

∫ t ′

to
λ(τ | sτ )dτ

)
.

(18)

With the above conditional density function and topological
ependency described in Sections 4.3 and 4.4, we combine topo-
ogical hidden states from the two-level attention architecture
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nd temporal point process for the final popularity prediction as:

log2 ŷ=

∫ tp

to
t · P(t |st )dt  

Λ

+FC
(
h(tL) ⊕ υ(tL)

)
(19)

here tp is the prediction time and to is the observation time.
he global path-aware dependence h

(
tj
)
contains the coupled

opological–temporal information. The local pattern results υ(tj)
ocus on the sudden rise/fall in the current time-slice. The first
erm Λ is the integration on Hawkes process based on intensity
unction (cf. Eq. (5)), which indicates the expected number of
opularity. The second term is the fusion concatenation of the
ast hidden states from the global dependency h (tL) and local pat-
erns υ(tL) through a fully-connected layer. We combine both of
hem to get the predicted incremental popularity ŷ. An overview
f Hawkesformer is shown in Algorithm 1.

Algorithm 1: Optimization of Hawkesformer
input : Observed information cascade Ck(to) with its retweet

history Hk = {(tj, vj, uj)}Lj=1 and its corresponding time
stamps sequence stj = {t0, t1, . . . , tn | tn < tj}.

output: Predicted cascade size S(tp|Hk) = ŷk(tp)
1 Random initialize the shared matrix U with normal distribution;
2 Obtain the collection of all user one-hot indices V;
3 Compute the initial position-wise embeddings UV;
4 Compute temporal encoding Z (Eq. (6));
5 Obtain initial user embedding X = UV + Z;
6 while not converged do
7 Train the global dependency module to obtain the

primary/non-primary attention scores Pscore/Nscore
(Eq. (10));

8 Obtain attention probability matrix A, contextualized
embeddings E, long-term dependency H;

9 Train the local pattern module to obtain evolution rate
encodings Υ ;

10 Obtain intensity function λ(t) at time t (Eq. (5));
11 Calculate the likelihood P(t ′ | st ) at time t ′;
12 Predict cascade size ŷ via Eq. (19);
13 end

4.5.2. Optimization
We can express the joint likelihood of observing retweets sto =

t0, t1, . . . , tn | tn < to} up to an observation time to as:

(Ck) = P({t0, t1, . . . , tn | tn < to})

=

∏
tj∈sto

f (tj | stj )

=

∏
tj∈sto

λ(tj | stj ) · exp(−
∫ to

t0

λ(τ | sτ )dτ )

=

L∑
j=0

log λ(tj | stj )  
retweet

−

∫ tL

t0

λ(t | st )dt,  
non-retweet

(20)

here sti denotes the retweets up to time ti of information cas-
ade Ck. Though using the intensity function of Hawkesformer we
an predict the size of cascades by simulations. However, the
odel still has no supervision signals to guide the way towards
etter performance. In this paper, we utilize the ground truth
opularity as the supervision signal. Specifically, suppose we
ave N information cascades {C1, C2, . . . , CN}, our model is opti-
ized by minimizing the Mean Squared Logarithmic Error (MSLE)

oss over popularity and maximizing the log-likelihood across all
9

information cascades:

L=
1
N

N∑
k=1

((
log2 yk−log2 ŷk

)2
−log ℓ(Ck)

)
(21)

Here ℓ(Ck) is the joint log-likelihood that needs to be maximized
given by Eq. (20). However, it is challenging to compute the non-
retweet log-likelihood Φ =

∫ tL
t0

λ(t | st )dt in Eq. (20), since
there is no closed-form for this integral Φ because of the softplus
function. Thus, we resort to applying a numerical integration [80]
to approximate the value of the integral, which is faster due to the
elimination of sampling process:

Φ̂NU =

L∑
j=2

tj − tj−1

2
(λ(tj | sj) + λ(tj−1 | sj−1)) (22)

Essentially, the above formula corresponds to the trapezoidal
ule for approximating the definite integral corresponding to
. Even though approximations build upon numerical integra-

ion algorithms are biased, in practice the errors are affordable.
his is because the conditional intensity (Eq. (5)) uses softplus
s its activation function, which is highly smooth and ensures
mall bias introduced by linear interpolations (Eq. (22)) between
onsecutive events.

.6. Complexity analysis

We close this section with an analysis of the computational
omplexity of Hawkesformer. For the dynamic DAGs we studied
n this paper, how to construct user embeddings efficiently is crit-
cal in practical applications. Despite sensitive user information
privacy and biased characteristics), the content of user retweets,
tructures of the diffusion, as well as temporal features, can be
onsidered as qualified user embeddings.

• Complexity for computing position-wise embeddings of nodes:
Compared to conventional graph cascade models – espe-
cially those random walk-based [20] and GNN-based mod-
els [27,52] – the position-wise embedding approach allows
Hawkesformer to handle large cascade efficiently. The time
and space complexities are both O(L) – i.e., linear in the
number of nodes during the observation time window.

• Complexity for computing global dependency of nodes: The
primary and non-primary assumption in global dependency
module are based on self-attention mechanism. The matrix
multiplication of self-attention is O(L2 · D), which is the
same as the vanilla self-attention [66] (D corresponds to the
dimension of embeddings).

• Complexity for computing local dependency of nodes: The sec-
ond level of Hawkesformer – the merging evolution of local
patterns with masked attention in Eq. (15) – is also based
on self-attention, and the time complexity is O(L2 · D), too.

We note that the time and space complexities of fully-connecte
ayers are related to the input dimensions of the hidden states.

. Experiments

We now discuss in detail the experimental settings and quan-
itative observations obtained, regarding the benefits of
awkesformer. We note that in addition to the comparative
esults with respect to the state-of-the-art, we also conducted
n ablation study regarding the impact of the different con-
tituents of Hawkesformer, as well as case studies illustrating the
nterpretation aspect.
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Table 2
Statistics of the datasets.

Dataset Twitter Weibo APS

#Cascade 88,440 119,313 207,685
#Node 490,474 6,738,040 616,316
Avg. popularity 142 240 51
Avg. sequence length 2.196 2.237 3.999

Number of cascades in two different observation settings
Train (1d/ 0.5 h/ 3y) 9,643 21,294 19,462
Val (1d/ 0.5 h/ 3y) 2,066 4,563 4,170
Test (1d/ 0.5 h/ 3y) 2,066 4,563 4,170
Train (2d/ 1 h/ 5y) 12,734 27,011 33,840
Val (2d/ 1 h/ 5y) 2,729 5,788 7,251
Test (2d/ 1 h/ 5y) 2,728 5,788 7,251

5.1. Datasets

In our evaluation we used three large-scale publicly avail-
ble information cascade datasets—Twitter, Sina Weibo, and APS
American Physical Society). There are two types of information:
weets in social networks and publications in an academic net-
ork, which we use in two settings: (1) predicting the number
f retweets of tweets; and (2) forecasting the citation count of
cademic papers. Both types of cascades are instances of real-
orld information diffusion processes, providing a relevant per-

ormance comparison between Hawkesformer and baselines. In
ddition, using two different scenarios allows us to verify the
eneralizability of the proposed model (i.e., avoid the risk of
imiting the model to a specific type of application). The statistics
f the datasets are summarized in Table 2, and we describe them
n detail below:

• Twitter hashtag cascade dataset used in this work is the one
collected by [77]. It contains public English written tweets
published between Mar 24 and Apr 25, 2012. A Hashtag
and its adopters form an information cascade. We set the
observation time to to 1 day or 2 days, and the prediction
time tp to 32 days.

• Sina Weibo dataset was collected from the largest mi-
croblog platform in China, as reported in [46]. It contains
119,313 tweets posted on Jun 1, 2016, and tracks all retweets
of each post within the next 24 h. Each tweet and its
retweets form an information retweet cascade. We set the
observation time to to 0.5 h or 1 h, and the prediction time
tp to 24 h.

• ASP dataset is from the American Physical Society (https:
//journals.aps.org/datasets), and it includes all papers pub-
lished in 17 APS journals between 1893 and 2017. Each
paper and the ones that cite it form an information citation
cascade. We set the observation time to to 3 years or 5 years,
and the prediction time tp to 20 years.

Distribution aspects. The above datasets face the challenge of
data imbalance which, in turn, yields unsatisfactory prediction
performance in conventional methods. Our recent study [28]
has addressed this issue by introducing a general decoupling
framework. We visualize the distribution of three datasets used
in our work in Fig. 6 and, as can be seen, they all follow the
long-tailed distribution. When learning with long-tailed data, a
common challenge is that instance-rich (or majority) cascades
dominate the training procedure. The learned regression model
tends to perform better on these instance-rich data, while per-
formance is significantly worse for instance-scarce (or minor-

ity) cascades. Considering VaCas [26] model as an example, we

10
conduct experiments on three long-tailed datasets. We plot the
model prediction and ground truth in Fig. 7, noting that the hor-
izontal and vertical axes are log-scale. The illustration indicates
that feeding the heavy-tailed data directly into prediction model
makes the instance-rich (or head) data dominate the training
procedure, influencing model’s predictions to be conservative
and distributed in the relatively middle range and lowering the
prediction performance. We take the initiative to use decoupling
training method [28] to cope with the long-tailed data distri-
bution, and we note that the other details of the experimental
configuration are discussed in Section 5.4.

Following previous works [27,46], we filter out cascades whose
|C(to)| < 10 and |C(to)| > 1, 000 and we only select first 1000
participants. We track Twitter hashtags before Apr 10, ensuring at
least 15 days during the observation window for each hashtag to
grow adopters. Due to the effect of diurnal rhythm in the Weibo
dataset, we focus on Weibo tweets posted between 8:00 AM and
6:00 PM, ensuring at least 6 h for retweets growth. As for the APS
dataset, we consider papers published between 1893 and 1997—
so that each paper has at least 20 years (1997–2017) to gain its
citations.

5.2. Baselines

To demonstrate the effectiveness of Hawkesformer for pre-
dicting the information cascade popularity, we consider nine
baselines from three categories. Recall that Hawkesformer is in-
spired by Hawkes Process and attention mechanism, which takes
topological–temporal coupling into account for cascade modeling.
Hence, we selected several strong methods covering Hawkes
process based models, graph/recurrent neural networks, as well
as attention based models. Moreover, we added feature-based
models.

• Feature engineering-based models: are widely used for infor-
mation cascade prediction. Features extracted from cascades
are fed into various machine learning models for prediction,
e.g., [81] use observed popularity Sk(to) to predict Ŝk(tp) of
news articles and online videos, we denote this method
as Feature-P. In addition, we extract features mentioned
in [14,15,39] and feed them into a linear regression model
and a two-layer MLP model, and denote these two meth-
ods as Feature-Linear and Feature-Deep. These features
include: (1) structural features: the number of leaf nodes,
the average degree (both in-degree and out-degree), average
and max length of retweet path of cascades. (2) temporal
features: time between original and first participant, cumu-
lative popularity series, mean time between the first half
and the second half of participants. (3) Other features: We
use node ids as node identity feature.

• Statistical model-based: SEISMIC [19] is a statistical and
generative cascade popularity prediction approach with an
implementation of traditional self-exciting Hawkes point
process, which uses the pre-specified power-law function
to fit the time decay effect in the intensity function. Deep-
Hawkes [46] combines both deep neural network and three
interpretable factors (the influence of users, self-exciting
mechanism, and time decay) of Hawkes process for pre-
diction. It utilizes RNNs on retweet path to model the
self-exciting mechanism.

• Deep learning-based: CasCN [27] is a hybrid model which
stacks GCNs to obtain node embeddings and uses RNNs to
model the evolving process of the diffusion. FOREST [51]
combines reinforcement learning and RNNs to handle the
multi-scale cascade prediction problem. VaCas [26] em-
ploys hierarchical variational autoencoders to embed both

https://journals.aps.org/datasets
https://journals.aps.org/datasets
https://journals.aps.org/datasets
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user-level behavior and cascade-level diffusion and utilizes
Bi-GRU to generate context-dependent cascade representa-
tions. TempCas [45] implements a heuristic method with
RNNs to embed cascade graph and uses LSTM over a specif-
ically designed attention-based CNN to learn the historical
short-term variation trend.

We note that Hawkesformer focuses on information cascade pop-
ularity prediction by observing participants during an observation
window. Some of the existing cascade prediction models focusing
on micro-level prediction [20,68,82,83] (e.g., predicting node ac-
tivation) or requiring special cascade features [9,84] (e.g., content
features and private information), are omitted for comparison.

5.3. Metrics

We use two widely adopted evaluation metrics following pre-
vious works [26–28] – mean square logarithmic error (MSLE) and
mean absolute percentage error (MAPE) — respectivelly defined
as:

MSLE =
1
N

N∑
k=1

(
log2 ∆ŷk − log2 ∆yk

)2
, (23)

MAPE =
1
N

N∑
i=k

⏐⏐log2 ∆ŷk − log2 ∆yk
⏐⏐

log2 ∆yk
, (24)

here N is the total number of cascades, where ∆ŷk = ŷk(tp) −

ˆk(to) is the incremental popularity, ∆yk = yk(tp) − yk(to) is the
ncrement of ground truth.
11
.4. Experimental settings

The node embedding dimension D is 64, batch size is 64,
ax sequence length is 1000. For global dependency module, we
tacked 4 blocks and 4 attention heads. For local pattern module,
e stacked 1 block and 4 attention heads. We employ the AdamW
ptimizer [85] with a linear warm-up, a linear decay learning rate
cheduler, and a peak learning rate of 3e−5. All model trainings
re early stopped with a patience of 10 epochs on validation loss.
o be fair, the dimension of the embeddings in all deep learning
ased models is set to 64. We randomly split each dataset into a
raining set (70%), a validation set (15%), and a test set (15%).

Configurations for decoupling training: Since infrequent cas-
ades (e.g., tweets with many retweets) are few during training,
odels trained with unbalanced data are prone to under-fit un-
ommon cascades. However, in practice, we expect predictions
ot to be affected by extreme values/outliers and the model
eneralizes well to all sizes of cascades. We consider decoupling
he learned representation from the regression perspective to
itigate the long-tailed cascade prediction problem [28]. As men-

ioned in [28], the best performance is achieved by combining
nstance-balanced sampling strategy and the η-norm+SUB decou-
ling scheme. Hence, we separate the whole training into two
tages: representation extractor and regressor. Specifically,

1. The input data are divided into three classes of popularity
in decreasing order based on our observation of cascade
sizes, i.e., many-shot (20%) represents the top 20% with
large popularity in the dataset, medium-shot (60%) repre-
sents the 60% with middle popularity in the dataset, and
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Table 3
Descriptive statistics of tree long-tailed datasets in decoupling training.

Observation setting Dataset Twitter Weibo APS

Few Medium Many Few Medium Many Few Medium Many

(1d/ 0.5 h/ 3y)
#Cascade 1,929 5,785 1,929 4,259 12,776 4,259 3,893 11,676 3,893
Range 12–18 19–358 >358 11–33 34–228 >228 11–21 22–65 >65
Avg. popularity 15 94 1,217 23 90 908 17 37 138

(2d/ 1 h/ 5y)
#Cascade 2,547 7,640 2,547 5,403 16,205 5,403 6,768 20,304 6,768
Range 12–19 20–305 >305 11–26 27–179 >179 11–18 19–52 >52
Avg. popularity 15 94 1217 19 70 673 15 30 107
Table 4
Performance comparison between Hawkesformer and the baselines on three datasets, measured by
10 runs of mean MSLEs (lower is better). The background colors denote long-tailed prediction after
applying decoupling scheme. ↑ means the percentage of performance improvement (lower met-

rics), ↓ means the percentage of performance reduction (higher metrics), a short dash (-) means

no significant improvement . The bold values indicate better results than other configurations. The bottom
right number of MSLE is the standard deviation. A paired t-test is performed, and ∗ denotes the statistical
significance (p < 0.05) compared to the best baseline method.

Model Twitter Weibo APS

1 Day 2 Day 0.5 h 1 h 3 Years 5 Years

Feature-P 14.792±0.11 13.515±0.12 4.455±0.09 4.001±0.10 2.382±0.03 2.348±0.05

Feature-Linear 9.326±0.10 6.758±0.09 2.959±0.07 2.640±0.11 1.852±0.02 1.728±0.02

SEISMIC [19] 9.401±0.06 8.336±0.08 4.678±0.03 3.934±0.15 1.704±0.03 1.736±0.02

Feature-Deep 7.438±0.18 6.357±0.14 2.715±0.13 2.546±0.06 1.844±0.03 1.666±0.11

↑ 2.1% ↑ 5.9% ↑ 3.8% ↑ 2.4% ↑ 5.7% ↑ 3.0%

DeepHawkes [46] 6.916±0.02 5.311±0.05 2.556±0.03 2.488±0.01 1.612±0.02 1.576±0.03

↑ 1.5% ↑ 1.9% ↑ 1.2% ↑ 2.7% ↑ 3.2% ↑ 7.0%

CasCN [27] 6.837±0.08 5.086±0.05 2.513±0.13 2.419±0.08 1.562±0.07 1.421±0.04

↓ 1.1% ↑ 0.3% ↑ 1.2% - ↑ 2.7% ↑ 2.7%

FOREST [52] 6.802±0.11 5.105±0.06 2.477±0.04 2.402±0.02 1.557±0.03 1.376±0.09

↑ 0.4% ↑ 1.9% ↑ 2.0% - ↓ 0.4% -

VaCas [26] 6.483±0.07 4.944±0.14 2.132±0.06 2.221±0.03 1.354±0.03 1.346±0.02

↑ 2.1% ↑ 3.3% ↑ 2.4% ↑ 1.5% ↑ 6.6% ↑ 3.1%

TempCas [45] 6.470±0.03 4.881±0.02 2.115±0.12 2.187±0.04 1.351±0.01 1.329±0.03

↑ 2.8% ↑ 9.6% ↑ 4.0% ↑ 1.1% ↑ 4.7% ↑ 1.8%

Hawkesformer 6.355∗

±0.03 4.317∗

±0.06 1.837∗

±0.07 2.166∗

±0.01 1.193∗

±0.05 1.288∗

±0.08

↑ 3.1% ↑ 0.3% ↑ 1.5% - ↑ 1.7% -
few-shot (20%) represents the last 20% with less popularity.
We report the descriptive statistics in Table 3.

2. We first train the backbone to extract information cascade
representations (using instance-balanced sampling strat-
egy), which learns the structural or temporal characteris-
tics of information cascades until convergence.

3. Secondly, we fix the parameters of backbone and then
fine-tune the regressor (using η-norm decoupling scheme),
which combines original prediction values and weighted
biases rectified by a specifically designed sub-network SUB.

All the deep-learning baselines (Feature-Deep, DeepHawkes,
CasCN, FOREST, Vacas, TempCas), including ours, except for using
unmodified original data in a plain training way, are also applied
to decoupling framework. The experimental results after applying
the decoupling training method are shown in Tables 4 and 5,
annotated with background colors.

5.5. Main result

The overall performance comparison between our proposed
Hawkesformer and baselines is shown in Tables 4 and 5, from
which we can see that Hawkesformer consistently outperforms
12
all the baselines, in terms of MSLE and MAPE, where the re-
sults of Hawkesformer surpass the best baseline (TempCas) by
13.1%∼16.7%. The superior performance of Hawkesformer lies
in its consideration of both global dependencies and local pat-
terns for short-term outbreaks in information cascades, which are
jointly modeled by the arrival intensity of Hawkes process and
the hierarchical attention framework. We have the following four
Observations:
(O1): The performance of Feature-Deep is superior than Feature-
Linear, suggesting that other than feature selection, model selec-
tion is also important for feature-based cascade prediction. No-
tably, feature-based methods sometimes have better performance
than diffusion-based methods and deep learning methods. How-
ever, their performance heavily depends on hand-crafted features
that are difficult to select for different scenarios in practice.
(O2): SEISMIC performs poorly since its excitation is indepen-
dent and additive over the past retweets. It makes a strong and
simplified hypothesis on the diffusion mechanism, which may
over-estimate the cascade size. Our framework lifts this restric-
tion and uses attention mechanism to model the dependencies
between patterns in information cascade such as the order, tim-
ing, and the number of the past retweets. As for DeepHawkes,
it models the diffusion process by feeding the retweet path into

RNNs, which is computationally intensive. It also determines the
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Table 5
Performance comparison between Hawkesformer and the baselines on three datasets, measured by 10 runs
of mean MAPEs (lower is better). The meaning of background color, ↑, ↓, and a short dash (-) are the same
as Table 4. The bold values indicate better results than other configurations. The bottom right number of
MAPE is the standard deviation. A paired t-test is performed, and ∗ denotes the statistical significance
(p < 0.05) compared to the best baseline method.

Model Twitter Weibo APS

1 Day 2 Day 0.5 h 1 h 3 Years 5 Years

Feature-P 0.961±0.01 0.983±0.01 0.391±0.02 0.398±0.00 0.316±0.01 0.352±0.03

Feature-Linear 0.520±0.00 0.459±0.02 0.258±0.01 0.271±0.01 0.272±0.02 0.291±0.00

SEISMIC [19] 0.403±0.03 0.434±0.01 0.412±0.02 0.319±0.04 0.332±0.00 0.325±0.03

Feature-Deep 0.485±0.02 0.500±0.00 0.228±0.05 0.272±0.02 0.270±0.07 0.282±0.04

↑ 2.7% ↑ 3.3% ↑ 3.6% - ↑ 4.6% -

DeepHawkes [46] 0.551±0.01 0.502±0.00 0.320±0.00 0.300±0.08 0.266±0.04 0.295±0.00

↑ 4.0% ↑ 2.2% ↑ 4.4% - ↑ 1.2% ↑ 3.5%

CasCN [27] 0.495±0.01 0.471±0.00 0.306±0.06 0.371±0.00 0.275±0.02 0.281±0.02

- ↓ 2.0% ↓ 4.9% - ↑ 2.7% ↑ 2.7%

FOREST [52] 0.511±0.00 0.493±0.04 0.328±0.04 0.377±0.02 0.278±0.00 0.280±0.00

↓ 0.7% - ↑ 1.6% - ↑ 3.7% ↑ 4.0%

VaCas [26] 0.437±0.00 0.353±0.00 0.246±0.03 0.250±0.01 0.224±0.04 0.278±0.00

↑ 7.3% ↑ 8.9% ↑ 7.8% ↑ 4.1% ↑ 4.5% ↑ 1.9%

TempCas [45] 0.406±0.04 0.335±0.03 0.263±0.00 0.237±0.03 0.203±0.07 0.252±0.00

↑ 8.7% - ↑ 12.8% ↑ 13.6% ↑ 5.1% ↑ 8.0%

Hawkesformer 0.357∗

±0.04 0.321∗

±0.03 0.226∗

±0.02 0.203∗

±0.01 0.194∗

±0.00 0.216∗

±0.03

↑ 2.8% ↑ 1.4% - ↑ 1.4% ↑ 0.7% -
influence of predecessor nodes only on the current node from the
retweet path, ignoring the implicit but important nodes out of
the path. According to Hawkes theory, any triggered users prior
to the current time will influence the arrival rate at the current
time. Instead, our proposed Hawkesformer computes the long-
term dependency attentions on all infected predecessors, which
is more effective in explicitly capturing node influences.
(O3): GNN/RNN-based models generally outperform the Hawkes
process-based models due to their capabilities in learning the
topological and temporal representations of cascades. However,
such hybrid models learn structural and temporal features sep-
arately, which cannot intuitively and effectively simulate the
whole diffusion process, losing cross-domain information. FOR-
EST [51], VaCas [26] and CasCN [27] use GNNs or graph learning
techniques to characterize the structure information within the
cascade snapshots. For example, CasCN applies convolutional op-
eration on a sequence of sub-graphs, which is redundant and
indirect for modeling the cascade diffusion process; Moreover,
these methods use RNNs to model the active nodes, which could
lead to error accumulation or gradient explosion/vanishing prob-
lems when the cascade length is long. Hawkesformer with self-
attention mechanism does not aggregate node information se-
quentially but generates the cascade embedding at once. Thus,
it is expressive and flexible for both long-term and local de-
pendencies (which used to be modeled by RNNs or 1d CNNs),
capturing the coupled temporal and topological dependency of
cascade from the continuous-time domain.
(O4): TempCas proposes heuristic strategies to sample critical
path and extracts graph scale features as supplementary to pre-
vent the loss of other informative features, which cannot fully
exploit the diffusion process of DAGs. It concatenates two LSTM
based modules and feeds them to an attention layer. Attention in
its RNN modules also aims at computing long-term dependencies
to alleviate the forgetting problem. This finding is consistent with
our argument that modeling long-term dependency is important
for diffusion prediction.

5.6. Results on decoupling scheme

In addition to the results under standard training, we show
the results after applying the decoupling framework in Tables 4
13
and 5 (the line with background colors after each model’s per-
formance). The experimental setting is shown in Section 5.4.
We first re-sample the cascade data using an instance-balanced
sampling strategy, and then re-train the regressor to rectify de-
cision boundaries through fine-tuning, enabling the regressor to
distinguish different cascade classes. From the results, we can
see that under a total of 84 conditions, most models (64/84) en-
joyed performance improvements within the decoupling scheme,
some models (15/84) showed no significant improvements, and
only a small number of models (5/84) encountered performance
degradation. These results demonstrate the effectiveness of the
decoupling scheme (instance-balanced sampling strategy and the
η-norm+SUB network [28]). The performance degradation mainly
occurs for CasCN and FOREST. As implied by [86], data imbalance
might not be a major issue when learning high-quality represen-
tations. Thus we speculate that the backbone networks of FOREST
and CasCN, or their ways of modeling cascade structures, are in-
capable of learning discriminative representations, and therefore
responsible for the performance degradation. It is worth noting
that the decoupling scheme does not improve Hawkesformer on
four conditions. Possible reasons include (1) performance satu-
ration on Weibo and APS datasets; (2) the local-pattern module
in Hawkesformer is able to capture the short-term outbreaks and
distinguish abnormal cascades (with extreme values/outliers) and
thus learn better cascade representations.

5.7. Ablation study

To further investigate the impact of each component in
Hawkesformer, we devised several variants described below.

5.7.1. Variants of Hawkesformer
Following are the descriptions of the six variants of

Hawkesformer that we built:

• (v1) w/o Global denotes removing Global Dependency
from Hawkesformer;

• (v2) w/o Local denotes removing Local Dependency module
from Hawkesformer;
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Fig. 8. Ablation experiments on six variants of Hawkesformer. Mean MSLEs and
MAPEs are reported by 5 runs with standard deviations.

• (v3) w/o Hawkes denotes removing Hawkes process and re-
taining the two-level attention framework from
Hawkesformer, which means modeling in discrete-time do-
main;

• (v4) Hawkes-GRU denotes replacing our devised attention
network by a sequential model (two layers of Bi-GRU).

• (v5) Hawkes-Vanilla1 denotes replacing our global depen-
dency (i.e. primary/non-primary assumption) and localmod-
ule with vanilla transformer encoder block.

• (v6) Hawkes-Vanilla2 is the same as THP [67]. The only
difference between Hawkes-Vanilla2 and Hawkes-Vanilla1
is that Hawkes-Vanilla2 (THP) uses global one-hot, rather
than our proposed position-wise user embedding used in
Hawkes-Vanilla1.

The performance of Hawkesformer variants are shown in
Fig. 8. We can see that all variants are inferior to Hawkesformer.
Specifically, we have the following observations:
(i) w/o Global performs worst among variants, demonstrat-
ing that Global Dependency module is a crucial and powerful
cascade feature extractor, which dynamically learn contextual-
ized cascade representations based on the position-wise user
14
Fig. 9. The comparison result of proposed position-wise embedding with global
one-hot and GraphWave on Hawkesformer. The X-axis is epochs, while the Y -
axis represents the trend of the MSLE metric. Mean MSLEs are reported by 5
runs with standard deviations.

embeddings. The Local Dependencymodule is also important com-
pared to other variants. This verifies the necessity of detecting
short-term outbreaks.
(ii) The performance of w/o Hawkes slightly decreases. Without
absorbing the raw timestamps by Hawkes process, variant w/o
Hawkes converts event sequence by aggregation based on pre-
defined time interval, which has the unwanted discretization
error [87], i.e., the learning is not sensitive to the choice of the
interval length for aggregation. Hence, the performance decrease
can reflect the importance of TPP in retaining the time informa-
tion, where the temporal history can be incorporated to facilitate
the prediction task.
(iii) The performance of Hawkes-GRU is inferior to Hawkesformer
due to the sequential training of RNNs which is notoriously tricky
when the sequence is too long. As a consequence, RNNs may
not be able to model sophisticated, long, and non-sequential
dependencies among cascade input, nor do they process all the
cascade events in parallel for efficient computation.
(iv) Vanilla transformer architecture fails to differentiate primary
or non-primary paths in cascade structure. It treats the current
node equally with infected predecessors and thus is unable to
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Fig. 10. Impact of the time-slice window ts on prediction performance, where 24 h, 1800 s, and 60 months are observation times of Twitter, Weibo, and APS datasets,
respectively. Mean MSLEs are reported by 5 runs with standard deviations.
Fig. 11. Impact of sliding observation window to on prediction performance of Twitter, Weibo, and APS datasets, respectively. Mean MSLEs are reported by 5 runs
with standard deviations.
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learn the main diffusion process. It also proves the effective-
ness of our primary and non-primary assumption. Specially, the
performance of Hawkes-Vanilla2 is slightly inferior to Hawkes-
anilla1, and Hawkes-Vanilla2 converges slower in training. This
ainly owes to the usage of position-wise user embedding in
awkes-Vanilla1, which reduces the cost of updating user con-
extualized embedding and therefore converges much faster than
lobal one-hot embedding (cf. Section 5.7.2).
Note that Hawkes-Vanilla2 treats data as a simple event se-

quence, which turns all nodes in graph into ‘‘one path’’ (cf.
Section 5.8). On the contrary, the first-level (Global Dependency)
module of Hawkesformer considers the impact of different paths—
therefore, the topological information exists in it. For one current
node, we consider the difference between primary and non-
primary paths; for all nodes in the entire generated DAG at
the predicted time, their primary paths and non-primary paths
are different. Hawkesformer also considers the evolution rate of
information cascade in a fixed time slice window to capture the
rise/fall behaviors in the second-level (Local Dependency) mod-
ule. In other words, Hawkesformer can improve the performance
of information cascade prediction from the above two aspects.

5.7.2. Position-wise embedding
To reveal the effect of our proposed position-wise embedding,

we replace it by a global one-hot vector (as previously used in
DeepHawkes [46]), or replace it by GraphWave (as previously
used in VaCas [26]). The comparison result is shown in Fig. 9.
We can observe that none of two variants are superior than
our designed position-wise user embedding, which is more suit-
able for the dynamic learning based on transformer architecture.
With the increase of the number of epochs, the loss (MSLE) of
position-wise embedding converges much faster than the other
two methods. Moreover, the global one-hot approach requires
15
0.4 M, 6 M, and 0.6 M individual user embeddings for Twit-
ter, Weibo, and APS, respectively, bringing considerable mem-
ory/computation overheads and converging slowly. In contrast,
Hawkesformer’s position-wise embedding dramatically reduces
the cost of updating user embeddings and speeds up the training
process. Graph wavelet used in [26] is a static node represen-
tation method for learning structural similarity among nodes,
which is insufficient to learn dynamic diffusion processes and
therefore performs the worst.

5.7.3. Parameter sensitivity of time-slice
For the local pattern module used in Hawkesformer, we fur-

ther explore the impact of time-slice ts on prediction perfor-
mance. As illustrated in Fig. 10, we obtained consistent results on
all three datasets. When the time-slice window is small, there are
fewer nodes in the same time-slice window. Thus, the diffusion
trends captured by local pattern module are rather similar to
the trends captured by long-term dependency module, which
brings redundant information. When the time-slice window is
getting larger, the differences between each window are also
small, making the short-breaks hard to be identified. We conclude
that an appropriate choice for time-slice window ts is around 6 h
or Twitter, 900 s for the Weibo, and 20 months for the APS.

.7.4. Pooling function
We further tried three pooling functions in local dependency

odule and the comparison results is shown in Table 6. We
an see that pooling function significantly affects the prediction
erformance. Specifically: average pooling performs the best in
omparison to max/sum poolings on three datasets; max pooling
erforms poorly, which could be the result of the inadequacy of
onsidering only the most influential node to reflect the evolution
ate of an information cascade.
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Fig. 12. Attention pattern visualization of three representative information cascades (small, medium, and viral) on the Weibo dataset. The attention scores are
averaged from all heads from the last layer of Hawkesformer. For each current node (on the diagonal), its left row scores represent how much predecessors influence
it; and the below column scores represent how much its successors are influenced by it.
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Table 6
Investigation the MAPE metric of different pool-
ing functions on Hawkesformer. The observation
setting is (1 day/0.5 h/5 years) for three datasets.

Pooling Twitter Weibo APS

Max 0.411 0.253 0.226
Sum 0.383 0.237 0.211
Average 0.357 0.226 0.216

5.7.5. Effect of observation time
The most critical parameter in Hawkesformer (also the case

or baselines) is the observation window to. Here we try out
sliding window and report the changes in MSLE results over

ime on Hawkesformer. As illustrated in Fig. 11, we can see that
s the observation time increases, the amount of the cascade
nformation known about diffusion process and the final size also
ncreases. As we expected, as time elapses, the more cascade
nformation (topological and temporal feature) is available, the
ore accurate prediction Hawkesformer can make, which is a
atural outcome of increasing the training data.

.8. Case studies on diffusion dependency

The ablation study results have shown that the long-term
ependency module plays a vital role in our approach. Here,
e plot heatmaps and cascade structures of three cascades in
ig. 12 to visualize the attention probability matrix A (extracted
rom all attention heads from the last layer of Hawkesformer, cf.
q. (11)) of three representative information cascades on Weibo
16
dataset. Each entry in matrix A is ranged in [0, 1] – the darker the
entry color, the higher the attention pattern – where each row of
matrix A represents the attention probability attended from its
predecessor nodes in the current history H. The sum of each row
is 1.

For information cascade C1 which is a small diffusion (13
users), our model pays more attention to the primary path as
well as the early users participating in the diffusion. For each
row of matrix A, we can see that the users on the primary
path generally have the most significant scores, which supports
our primary/non-primary assumption during the information dif-
fusion (similar phenomena are also shown in cascade C2 and
C3). Hawkesformer can distinguish different paths. For node 9
in cascade C1, Hawkesformer detects that 0 → 2 → 9 is the
rimary path. Also, node 0 and node 2 have a slightly greater
mpact on node 9, while other nodes on the non-primary path
ave a smaller impact on node 9’s retweet behavior. For node
, Hawkesformer detects that 0 → 4 → 8 is the primary path,

node 0 and node 4 have a greater impact on node 8, while
other nodes on the non-primary have a smaller impact on the
retweeting behavior of node 8. For information cascade C2 which
is a medium diffusion (58 users), we observed that there are
long-term dependencies between root user and successors. This
indicates that modeling the long-term dependencies between
nodes in dynamic diffusion topology is needed since sequential
models such as RNNs are hard to train on long-sequence and
face gradient vanishing/exploding issues when the sequence is
too long. We also observed several short-term outbreaks, which
again verifies our assumption of modeling local patterns for in-

formation cascade learning. At last, we showed a viral spreading
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ascade C3 which has 106 users and a max depth of 8. Most of
he retweets (∼84%) in this cascade are from indirect users to the
oot. We found that even ‘‘tail’’ users on the end of the diffusion
ree can trigger outbreaks (e.g., users 19 and 43). Some users
erved as hubs connecting other influential users to bring them
nto the process of information diffusion.

. Conclusion

We presented Hawkesformer, a novel methodology for ef-
ectively modeling the information cascade diffusion process by
inking the merits of Transformer to Hawkes process. At the
irst level, our designed global path-aware attention module can
ffectively capture the long-term diffusion dependencies between
odes in the dynamic diffusion topology. At the second level, our
roposed local pooling attention module can accurately capture
ise/fall trend of information cascades. Mutual cooperation of
wo modules enables Hawkesformer to better predict the cascade
ehaviors and propagation popularity. Besides, we customized a
osition-wise embedding approach for learning user influences in
iffusion DAGs. Unlike existing models that the topological and
emporal features separately, we highlighted the loss of cross-
omain information, and proposed a new learning scheme ex-
loiting coupled topological and temporal modeling to effectively
imulate their entanglement in the diffusion process. Through
he attention visualization results, we found that there are long-
erm dependencies between root user and successors, short-term
utbreaks, and users on the primary path generally have the most
ignificant scores, which supports the global–local user depen-
encies assumption and the primary/non-primary assumption.
An immediate next step of our work is to

xtend Hawkesformer to incorporate other informative features,
.g., fusing multimodal content features such as texts, topics
nd figures of microblogs, etc. Another direction of our ongo-
ng work is to incorporate memory-efficient continuous mod-
ls such as neural ordinary differential equations (NODE) [88]
nto Hawkesformer, to learn a smoother hidden states. We will
lso investigate the benefits of applying Hawkesformer to other
usiness-related contexts, e.g., effective advertising and inter-
retation of viral information spreading such as rumors and
pidemics.

RediT authorship contribution statement

Liu Yu: Writing, Coding – original draft, Visualization, Experi-
ent, Conceptualization, Methodology, Formal analysis, Revision.
ovee Xu: Conceptualization, Visualization, Investigation, Writ-
ng – review & editing. Goce Trajcevski: Writing – review & edit-
ng, Investigation, Funding acquisition, Revision. Fan Zhou: Su-
ervision, Funding acquisition, Investigation, Resources, Writing
review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This work was supported by the National Natural Science
oundation of China (Grant No. 62176043 and No. 62072077),
atural Science Foundation of Sichuan Province, China (Grant No.
022NSFSC0505 and No. 2022NSFSC0956), Sichuan Science and
echnology Program, China (Grant No. 2022YFSY0006), and the

SF SWIFT, USA grant 2030249.

17
References

[1] F. Zhou, X. Xu, G. Trajcevski, K. Zhang, A survey of information cascade
analysis: Models, predictions, and recent advances, ACM Comput. Surv. 54
(2) (2021).

[2] H. Li, C. Xia, T. Wang, S. Wen, C. Chen, Y. Xiang, Capturing dynamics of
information diffusion in SNS: A survey of methodology and techniques,
ACM Comput. Surv. 55 (1) (2021) 1–51.

[3] H. Shen, D. Wang, C. Song, A.-L. Barabási, Modeling and predicting
popularity dynamics via reinforced poisson processes, in: AAAI, Vol.28, (1)
2014.

[4] D. Gruhl, R. Guha, D. Liben-Nowell, A. Tomkins, Information diffusion
through blogspace, in: WWW, 2004, pp. 491–501.

[5] J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, M. Hurst, Patterns of
cascading behavior in large blog graphs, in: Proceedings of the 2007 SIAM
International Conference on Data Mining, SIAM, 2007, pp. 551–556.

[6] B. Golub, M.O. Jackson, Using selection bias to explain the observed
structure of internet diffusions, Proc. Natl. Acad. Sci. USA 107 (24) (2010)
10833–10836.

[7] M. Gomez-Rodriguez, J. Leskovec, A. Krause, Inferring networks of diffusion
and influence, TKDD 5 (4) (2012) 1–37.

[8] S. Masud, S. Dutta, S. Makkar, C. Jain, V. Goyal, A. Das, T. Chakraborty, Hate
is the new infodemic: A topic-aware modeling of hate speech diffusion on
Twitter, in: ICDE, IEEE, 2021, pp. 504–515.

[9] D. Liao, J. Xu, G. Li, W. Huang, W. Liu, J. Li, Popularity prediction on online
articles with deep fusion of temporal process and content features, in:
AAAI, Vol. 33, (01) 2019, pp. 200–207.

[10] S. Vosoughi, D. Roy, S. Aral, The spread of true and false news online,
Science 359 (6380) (2018) 1146–1151.

[11] K.-Y. Lin, R.K.-W. Lee, W. Gao, W.-C. Peng, Early prediction of hate speech
propagation, in: International Conference on Data Mining Workshops,
ICDMW, IEEE, 2021, pp. 967–974.

[12] S. Thirumuruganathan, M. Simpson, L.V. Lakshmanan, To intervene or
not to intervene: Cost based intervention for combating fake news, in:
International Conference on Management of Data, 2021, pp. 2300–2309.

[13] K.Y. Kamath, J. Caverlee, Spatio-temporal meme prediction: learning what
hashtags will be popular where, in: CIKM, 2013, pp. 1341–1350.

[14] J. Cheng, L. Adamic, P.A. Dow, J.M. Kleinberg, J. Leskovec, Can cascades be
predicted? in: WWW, 2014, pp. 925–936.

[15] S. Mishra, M.-A. Rizoiu, L. Xie, Feature driven and point process approaches
for popularity prediction, in: CIKM, 2016, pp. 1069–1078.

[16] F. Davletov, A.S. Aydin, A. Cakmak, High impact academic paper prediction
using temporal and topological features, in: CIKM, 2014, pp. 491–498.

[17] D.J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes:
Volume I: Elementary Theory and Methods, Springer, 2003.

[18] A.G. Hawkes, Spectra of some self-exciting and mutually exciting point
processes, Biometrika 58 (1) (1971) 83–90.

[19] Q. Zhao, M.A. Erdogdu, H.Y. He, A. Rajaraman, J. Leskovec, Seismic: A self-
exciting point process model for predicting tweet popularity, in: KDD,
2015, pp. 1513–1522.

[20] C. Li, J. Ma, X. Guo, Q. Mei, Deepcas: An end-to-end predictor of
information cascades, in: WWW, 2017, pp. 577–586.

[21] J. Wang, V.W. Zheng, Z. Liu, K.C.-C. Chang, Topological recurrent neural
network for diffusion prediction, in: ICDM, IEEE, 2017, pp. 475–484.

[22] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally
connected networks on graphs, 2013, ArXiv:1312.6203.

[23] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph
attention networks, 2017, ArXiv:1710.10903.

[24] X. Feng, Q. Zhao, Y. Li, AECasN: An information cascade predictor by
learning the structural representation of the whole cascade network with
autoencoder, Expert Syst. Appl. 191 (2022) 116260.

[25] X. Xu, F. Zhou, K. Zhang, S. Liu, G. Trajcevski, CasFlow: Exploring hierar-
chical structures and propagation uncertainty for cascade prediction, IEEE
Trans. Knowl. Data Eng. (TKDE) (2021).

[26] F. Zhou, X. Xu, K. Zhang, G. Trajcevski, T. Zhong, Variational information
diffusion for probabilistic cascades prediction, in: INFOCOM, IEEE, 2020,
pp. 1618–1627.

[27] X. Chen, F. Zhou, K. Zhang, G. Trajcevski, T. Zhong, F. Zhang, Information
diffusion prediction via recurrent cascades convolution, in: ICDE, IEEE,
2019, pp. 770–781.

[28] F. Zhou, L. Yu, X. Xu, G. Trajcevski, Decoupling representation and re-
gressor for long-tailed information cascade prediction, in: SIGIR, 2021, pp.
1875–1879.

[29] L. Gao, B. Zhou, Y. Jia, H. Tu, Y. Wang, C. Chen, H. Wang, H. Zhuang, Deep
learning for social network information cascade analysis: a survey, in: IEEE
International Conference on Data Science in Cyberspace, DSC, IEEE, 2020,
pp. 89–97.

[30] X. Gao, Z. Cao, S. Li, B. Yao, G. Chen, S. Tang, Taxonomy and evaluation for
microblog popularity prediction, ACM Trans. Knowl. Discov. Data (TKDD)
13 (2) (2019) 1–40.

http://refhub.elsevier.com/S0950-7051(22)00880-2/sb1
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb1
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb1
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb1
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb1
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb2
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb2
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb2
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb2
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb2
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb3
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb3
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb3
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb3
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb3
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb4
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb4
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb4
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb5
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb5
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb5
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb5
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb5
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb6
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb6
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb6
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb6
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb6
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb7
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb7
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb7
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb8
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb8
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb8
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb8
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb8
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb9
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb9
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb9
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb9
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb9
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb10
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb10
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb10
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb11
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb11
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb11
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb11
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb11
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb12
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb12
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb12
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb12
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb12
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb13
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb13
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb13
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb14
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb14
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb14
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb15
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb15
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb15
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb16
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb16
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb16
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb17
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb17
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb17
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb18
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb18
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb18
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb19
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb19
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb19
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb19
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb19
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb20
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb20
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb20
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb21
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb21
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb21
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1710.10903
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb24
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb24
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb24
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb24
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb24
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb25
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb25
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb25
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb25
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb25
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb26
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb26
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb26
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb26
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb26
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb27
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb27
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb27
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb27
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb27
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb28
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb28
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb28
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb28
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb28
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb29
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb29
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb29
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb29
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb29
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb29
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb29
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb30
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb30
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb30
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb30
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb30


L. Yu, X. Xu, G. Trajcevski et al. Knowledge-Based Systems 255 (2022) 109740
[31] J. Wang, W. Jiang, K. Li, G. Wang, K. Li, Incremental group-level popularity
prediction in online social networks, ACM Trans. Internet Technol. (TOIT)
22 (1) (2021) 1–26.

[32] X. Chen, F. Zhou, F. Zhang, M. Bonsangue, Modeling microscopic and
macroscopic information diffusion for rumor detection, Int. J. Intell. Syst.
36 (10) (2021) 5449–5471.

[33] C. Gou, H. Shen, P. Du, D. Wu, Y. Liu, X. Cheng, Learning sequential features
for cascade outbreak prediction, Knowl. Inf. Syst. 57 (3) (2018) 721–739.

[34] C. Yang, M. Sun, H. Liu, S. Han, Z. Liu, H. Luan, Neural diffusion model for
microscopic cascade study, IEEE Trans. Knowl. Data Eng. (TKDE) (2019).

[35] J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, J. Tang, Deepinf: Social influence
prediction with deep learning, in: KDD, 2018, pp. 2110–2119.

[36] S. Petrovic, M. Osborne, V. Lavrenko, Rt to win! predicting message
propagation in twitter, in: ICWSM, Vol. 5, (1) 2011.

[37] H. Li, X. Ma, F. Wang, J. Liu, K. Xu, On popularity prediction of videos
shared in online social networks, in: CIKM, 2013, pp. 169–178.

[38] B. Chang, H. Zhu, Y. Ge, E. Chen, H. Xiong, C. Tan, Predicting the
popularity of online serials with autoregressive models, in: CIKM, 2014,
pp. 1339–1348.

[39] B. Shulman, A. Sharma, D. Cosley, Predictability of popularity: Gaps
between prediction and understanding, in: ICWSM, Vol. 10, (1) 2016.

[40] V. Isham, M. Westcott, A self-correcting point process, Stochastic Process.
Appl. 8 (3) (1979) 335–347.

[41] M.-A. Rizoiu, Y. Lee, S. Mishra, L. Xie, A tutorial on hawkes processes for
events in social media, 2017, ArXiv:1708.06401.

[42] R. Kobayashi, R. Lambiotte, Tideh: Time-dependent hawkes process for
predicting retweet dynamics, in: ICWSM, 2016.

[43] M.-A. Rizoiu, L. Xie, S. Sanner, M. Cebrian, H. Yu, P. Van Hentenryck, Ex-
pecting to be HIP: Hawkes intensity processes for social media popularity,
in: WWW, 2017, pp. 735–744.

[44] Q. Kong, M.-A. Rizoiu, L. Xie, Describing and predicting online items with
reshare cascades via dual mixture self-exciting processes, in: CIKM, 2020,
pp. 645–654.

[45] X. Tang, D. Liao, W. Huang, J. Xu, L. Zhu, M. Shen, Fully exploiting cascade
graphs for real-time forwarding prediction, in: AAAI, Vol. 35, (1) 2021, pp.
582–590.

[46] Q. Cao, H. Shen, K. Cen, W. Ouyang, X. Cheng, Deephawkes: Bridging the
gap between prediction and understanding of information cascades, in:
CIKM, 2017, pp. 1149–1158.

[47] Y. Wang, X. Wang, R. Michalski, Y. Ran, T. Jia, CasSeqGCN: Combining
network structure and temporal sequence to predict information cascades,
2021, ArXiv:2110.06836.

[48] C. Donnat, M. Zitnik, D. Hallac, J. Leskovec, Learning structural node
embeddings via diffusion wavelets, in: KDD, 2018, pp. 1320–1329.

[49] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolu-
tional networks, 2016, ArXiv:1609.02907.

[50] Q. Zhang, R. Luo, Y. Yang, Y. Liu, Benchmarking deep sequential models
on volatility predictions for financial time series, 2018, ArXiv:1811.03711.

[51] C. Yang, J. Tang, M. Sun, G. Cui, Z. Liu, Multi-scale information diffu-
sion prediction with reinforced recurrent networks, in: IJCAI, 2019, pp.
4033–4039.

[52] Q. Cao, H. Shen, J. Gao, B. Wei, X. Cheng, Popularity prediction on social
platforms with coupled graph neural networks, in: WSDM, 2020, pp.
70–78.

[53] L. Yu, X. Xu, G. Trajcevski, F. Zhou, Linking transformer to hawkes process
for information cascade prediction (student abstract), in: AAAI, 2022.

[54] Y. Zhao, N. Yang, T. Lin, S.Y. Philip, Deep collaborative embedding for
information cascade prediction, Knowl.-Based Syst. 193 (2020) 105502.

[55] R. Krohn, T. Weninger, Modelling online comment threads from their start,
in: 2019 IEEE International Conference on Big Data, Big Data, IEEE, 2019,
pp. 820–829.

[56] X. Xu, F. Zhou, K. Zhang, S. Liu, CCGL: Contrastive cascade graph learning,
IEEE Trans. Knowl. Data Eng. (TKDE) (2021).

[57] A. Veen, F.P. Schoenberg, Estimation of space–time branching process
models in seismology using an em–type algorithm, J. Amer. Statist. Assoc.
103 (482) (2008) 614–624.

[58] E. Errais, K. Giesecke, L.R. Goldberg, Affine point processes and portfolio
credit risk, SIAM J. Financial Math. 1 (1) (2010) 642–665.

[59] P. Reynaud-Bouret, S. Schbath, Adaptive estimation for hawkes processes;
application to genome analysis, Ann. Statist. 38 (5) (2010) 2781–2822.
18
[60] G.O. Mohler, M.B. Short, P.J. Brantingham, F.P. Schoenberg, G.E. Tita, Self-
exciting point process modeling of crime, J. Amer. Statist. Assoc. 106 (493)
(2011) 100–108.

[61] N. Du, H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, L. Song,
Recurrent marked temporal point processes: Embedding event history to
vector, in: KDD, 2016, pp. 1555–1564.

[62] J. Yan, Recent advance in temporal point process: from machine learning
perspective, SJTU Tech. Rep. (2019).

[63] D. Luo, H. Xu, Y. Zhen, X. Ning, H. Zha, X. Yang, W. Zhang, Multi-task
multi-dimensional hawkes processes for modeling event sequences, in:
AAAI, 2015.

[64] W. Lian, R. Henao, V. Rao, J. Lucas, L. Carin, A multitask point process
predictive model, in: ICML, 2015, pp. 2030–2038.

[65] H. Mei, J. Eisner, The neural hawkes process: A neurally self-modulating
multivariate point process, 2016, ArXiv:1612.09328.

[66] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez,
Ł. Kaiser, I. Polosukhin, Attention is all you need, in: NIPS, 2017, pp.
5998–6008.

[67] S. Zuo, H. Jiang, Z. Li, T. Zhao, H. Zha, Transformer hawkes process, in:
ICML, 2020, pp. 11692–11702.

[68] Q. Zhang, A. Lipani, O. Kirnap, E. Yilmaz, Self-attentive hawkes process, in:
ICML, 2020, pp. 11183–11193.

[69] L.-n. Zhang, J.-w. Liu, Z.-y. Song, X. Zuo, W.-m. Li, Z.-y. Liu, Universal
transformer hawkes process, in: 2021 International Joint Conference on
Neural Networks, IJCNN, IEEE, 2021, pp. 1–7.

[70] L.-n. Zhang, J.-w. Liu, Z.-y. Song, X. Zuo, Temporal attention aug-
mented transformer Hawkes process, Neural Comput. Appl. 34 (5) (2022)
3795–3809.

[71] D. Walther, U. Rutishauser, C. Koch, P. Perona, On the usefulness of atten-
tion for object recognition, in: Workshop on Attention and Performance
in Computational Vision At ECCV, Vol. 1, Citeseer, 2004.

[72] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly
learning to align and translate, 2014, ArXiv:1409.0473.

[73] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, 2018, ArXiv:1810.
04805.

[74] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., Language
models are unsupervised multitask learners, OpenAI Blog 1 (8) (2019) 9.

[75] S.H. Khan, M. Naseer, M. Hayat, S.W. Zamir, F.S. Khan, M. Shah,
Transformers in vision: A survey, 2021, ArXiv:2101.01169.

[76] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: CVPR, 2018,
pp. 7132–7141.

[77] L. Weng, F. Menczer, Y.-Y. Ahn, Virality prediction and community
structure in social networks, Sci. Rep. 3 (1) (2013) 1–6.

[78] X. Xu, T. Zhong, C. Li, G. Trajcevski, F. Zhou, Heterogeneous dynamical
academic network for learning scientific impact propagation, Knowl.-Based
Syst. 238 (2022) 107839, http://dx.doi.org/10.1016/j.knosys.2021.107839.

[79] A. Grover, J. Leskovec, Node2vec: Scalable feature learning for networks,
in: KDD, 2016, pp. 855–864.

[80] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Vol. 12, Springer
Science & Business Media, 2013.

[81] G. Szabo, B.A. Huberman, Predicting the popularity of online content,
Commun. ACM 53 (8) (2010) 80–88.

[82] A. Sankar, X. Zhang, A. Krishnan, J. Han, Inf-vae: A variational autoencoder
framework to integrate homophily and influence in diffusion prediction,
in: WSDM, 2020, pp. 510–518.

[83] Y. Gu, Attentive neural point processes for event forecasting, in: AAAI, Vol.
35, (9) 2021, pp. 7592–7600.

[84] G. Chen, Q. Kong, N. Xu, W. Mao, NPP: A neural popularity prediction
model for social media content, Neurocomputing 333 (2019) 221–230.

[85] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, in: ICLR,
2019.

[86] B. Kang, S. Xie, M. Rohrbach, Z. Yan, A. Gordo, J. Feng, Y. Kalantidis,
Decoupling representation and classifier for long-tailed recognition, 2019,
ArXiv:1910.09217.

[87] A.S. Fotheringham, D.W. Wong, The modifiable areal unit problem
in multivariate statistical analysis, Environ. Plan. A 23 (7) (1991)
1025–1044.

[88] R.T. Chen, Y. Rubanova, J. Bettencourt, D.K. Duvenaud, Neural ordinary
differential equations, NeurIPS 31 (2018).

http://refhub.elsevier.com/S0950-7051(22)00880-2/sb31
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb31
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb31
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb31
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb31
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb32
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb32
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb32
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb32
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb32
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb33
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb33
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb33
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb34
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb34
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb34
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb35
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb35
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb35
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb36
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb36
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb36
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb37
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb37
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb37
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb38
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb38
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb38
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb38
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb38
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb39
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb39
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb39
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb40
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb40
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb40
http://arxiv.org/abs/1708.06401
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb42
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb42
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb42
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb43
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb43
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb43
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb43
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb43
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb44
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb44
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb44
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb44
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb44
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb45
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb45
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb45
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb45
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb45
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb46
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb46
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb46
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb46
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb46
http://arxiv.org/abs/2110.06836
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb48
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb48
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb48
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1811.03711
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb51
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb51
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb51
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb51
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb51
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb52
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb52
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb52
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb52
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb52
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb53
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb53
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb53
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb54
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb54
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb54
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb55
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb55
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb55
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb55
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb55
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb56
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb56
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb56
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb57
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb57
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb57
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb57
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb57
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb58
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb58
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb58
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb59
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb59
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb59
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb60
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb60
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb60
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb60
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb60
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb61
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb61
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb61
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb61
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb61
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb62
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb62
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb62
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb63
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb63
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb63
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb63
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb63
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb64
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb64
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb64
http://arxiv.org/abs/1612.09328
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb66
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb66
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb66
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb66
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb66
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb67
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb67
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb67
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb68
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb68
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb68
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb69
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb69
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb69
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb69
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb69
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb70
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb70
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb70
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb70
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb70
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb71
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb71
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb71
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb71
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb71
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb74
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb74
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb74
http://arxiv.org/abs/2101.01169
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb76
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb76
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb76
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb77
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb77
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb77
http://dx.doi.org/10.1016/j.knosys.2021.107839
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb79
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb79
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb79
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb80
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb80
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb80
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb81
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb81
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb81
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb82
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb82
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb82
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb82
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb82
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb83
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb83
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb83
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb84
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb84
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb84
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb85
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb85
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb85
http://arxiv.org/abs/1910.09217
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb87
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb87
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb87
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb87
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb87
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb88
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb88
http://refhub.elsevier.com/S0950-7051(22)00880-2/sb88

	Transformer-enhanced Hawkes process with decoupling training for information cascade prediction
	Introduction
	Related work
	Information cascade popularity prediction
	Hawkes point process
	Attention mechanism

	Preliminaries
	Model
	Transformer enhanced Hawkes process
	User embeddings
	Modeling global dependence by self-attention mechanism
	Modeling local patterns with pooling attention
	Prediction and optimization
	Prediction
	Optimization

	Complexity analysis

	Experiments
	Datasets
	Baselines
	Metrics
	Experimental settings
	Main result
	Results on decoupling scheme
	Ablation study
	Variants of 
	Position-wise embedding
	Parameter sensitivity of time-slice
	Pooling function
	Effect of observation time

	Case studies on diffusion dependency

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


