
Learning Latent Seasonal-Trend Representations for
Time Series Forecasting (Technical Appendix)

In this body of supplementary materials, we first provide the proofs of ELBO inference with de-
composition, reconstruction loss alternative, and MINE biased gradient. Next, we discuss the use
of Discrete Fourier transform and autocorrelation methods in our work. This is followed by a more
detailed discussion of the use of prior distribution, mutual information upper bounds, along with the
complexity results of our algorithmic solutions. Lastly, we present the details of the experimental
settings and provide some additional results to support the claims in the main text.

A Proofs

Following are the details of the proofs of the claims from the main text – Theorem 1, Theorem 2 and
the MI lower bound (cf. Section 4).

A.1 Inference of ELBO with decomposition

We follow the decomposition strategy, in the sense that time series and their representations are com-
posed of multiple components such as seasonal Zs and trend Zt. Sequence X and Y is decomposed
as a sum form, i.e., X = Xs +Xt, Y = Y s + Y t. Representations Zs and Zt are independent from
each other, i.e., P (Zs, Zt) = P (Zs)P (Zt) and, additionally, Zt and Zs are only associated with
their own components. With the above assumptions, we have:

LELBO = log

∫
Z

Pψ(Y |Z)Qϕ(Z|X)dZ + EQϕ(Z|X)[logPθ(X|Z)]−KL(Qϕ(Z|X)||P (Z))

= log

∫
Zs

∫
Zt

Pψ(Y |Zs, Zt)Qϕs,ϕt(Zs, Zt|X)dZsdZt

+ EQϕs,ϕt (Zs,Zt|X)[logPθ(X|Zs, Zt)]−KL(Qϕs,ϕt(Zs, Zt|X)||P (Zs, Zt))

= log

∫
Zs

∫
Zt

Pψ(Y |Zs, Zt)Qϕs,ϕt(Zs, Zt|X)dZsdZt

+ EQϕs (Zs|X)[logPθ(X|Zs)] + EQϕs (Zt|X)[logPθ(X|Zt)]
−KL(Qϕs(Zs|X)||P (Zs))−KL(Qϕt(Zt|X)||P (Zt))

= log

∫
Z

Pψ(Y |Zt, Zs)Qϕs,ϕt(Zs, Zt|X)dZsdZt

+ EQϕs (Zs|X)[logPθs(X
s|Zs)] + EQϕt (Zt|X)[logPθt(X

t|Zt)]
−KL(Qϕs(Zs|X)||P (Zs))−KL(Qϕt(Zt|X)||P (Zt)). (A1)

A.2 Proof of the alternative of reconstruction loss

The loss function of logPθ(X|Z) can be written with Gaussian distribution as:

− logPθ(X|Z) =

(
log σθ(Z) +

1

2
log 2π +

1

2

∥X − µθ(Z)∥2
σθ(Z)

)
∝ ∥X − µθ(Z)∥2, (A2)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

where µθ(Z) and σθ(Z) are neural networks that reconstruct the X from latent representations. By
the above equation, maximizing the reconstruction loss is regarded as minimizing the euclidean
distance between inputs and reconstructions.

Thus, we opt to optimize the reconstruction loss in LaST by finding a way that imposes closer
distances between raw input Xs, Xt, and reconstructed input X̂s, X̂t. There are three terms in Eq.
(6) in main text:

Lrec = −
T−1∑
κ=1

∥∥AXX(κ)−AX̂sX̂s(κ)
∥∥2 + CORT(X, X̂t)−

∥∥∥X̂t + X̂s −X
∥∥∥2 ,

1. The first term reflects the similarity between every instant value in X and its κ-lagged value.
We can regard the function AXX(κ) as an unnormalized score that measures the confidence
of period κ [1, 2]. A lower distance between the two autocorrelation sequences means more
similar periodic characteristics. With identical autocorrelations, reconstructed X̂s will be
same as Xs in the seasonal view but still holds interference. The optimized reconstructed
X̂s can be formulated as X̂s = Xs + εs, where ε denotes the interference error.

2. The second normalized term reflects the similarity between the first differences of the
input time series, which further measures the simultaneity of two signals’ rising or falling
patterns, i.e., the trend. With this objective, the reconstructed trend input is formulate as
X̂t = Xt + εt similar to X̂s.

3. The third term now naturally becomes ∥εs + εt∥2 aiming to minimize the interference terms.

These three terms are used to reconstruct the pure seasonal and trend components and optimize the
above reconstruction loss.

A.3 Biased gradient of MINE

The lower bound of MI between X and Z is estimated by MINE [3], which is defined as

I(X,Z) ≥ EQϕ(X,Z)[γα(X,Z)]− logEQ(x)Qϕ(z)[exp(γα(X,Z))] = IMINE . (A3)

When sampling the time series in a mini-batch B (see details in Algorithm 1), it becomes

IMINE(X,Z) =
1

B
B∑

i=j=1

γα(X
(i), Z(i))− log

1

B
B∑

i=j=1

exp(γα(X
(i), Z(j))), (A4)

where Z(i) and Z(j) are derived from parameters-driven encoders Qϕ(Z|X) with input X . The
gradient of MINE is calculated by general stochastic optimizer such as Adam [4] or others:

GB =
1

B
B∑

i=j=1

∇α,ϕγα(X
(i), Z(i))−

∑B
i=j=1 ∇α,ϕγα(X

(i), Z(j) exp(γα(X
(i), Z(j))∑B

i=j=1 exp(γα(X
(i), Z(j))

, (A5)

where the second term holds bias since the derivative of logarithmic function.

B Discrete Fourier transform and autocorrelation

The details of our use of Discrete Fourier Transform and efficient autocorrelation are presented next.

B.1 Discrete Fourier Transform

We apply discrete Fourier Transform (DFT) and inverse Discrete Fourier Transform (iDFT) to
construct the mapping between time and frequency domain (cf. Figure 1 in the main text). First,
given a time domain sequence of seasonality Zs = {Zs1 , Zs2 , . . . , ZsT }, we consider the first

⌊
T+1
2

⌋
Fourier coefficients according to the Nyquist theorem [5]:

ZsF,k = F(Zs)k =

T∑
t=1

Zst · exp(
−2πikt

T
), (B1)

2

where 1 ≤ k ≤
⌊
T+1
2

⌋
. Then time domain seasonal representation is extended and mapped from

frequency domain with iDFT:

Zst = F−1(ZFs)t =
1

T

T∑
k=1

ZsF,k · exp(
2πikt

T
), where 1 ≤ t ≤ T + τ, (B2)

where we derive predictable representations Z̃s by taking the last τ time steps. In LaST, we use the
fast version of DFT [6] based on halving lemma and divide-and-conquer strategy, based on which the
time complexity becomes O(T log T), as opposed to the original O(T 2).

B.2 Efficient autocorrelation

The autocorrelation of sequence X with κ lagged steps is defined as

AXX(κ) =

T−κ∑
i=1

(Xt − X̄)(Xt+κ − X̄). (B3)

To obtain the autocorrelation sequence, it requires T (T − 1)/2 times multiplications, each of which
holds O(d2) time complexity, where d is the dimension of X . To improve the efficiency, we
employ the Wiener–Khinchin theorem [7] that allows computing the autocorrelation with fast Fourier
transform (FFT) and its inverse transform as:

XF = FFT (Xs), (B4)
SF = XFX

∗
F , (B5)

AXX(0 : T − 1) = iFFT (SF), (B6)

where the asterisk denotes complex conjugate, and the output AXX(0 : T − 1) denotes sequence
{AXX(κ)}κ∈[0:T−1]. In this setting, the number of multiplication calculations drops to T log T
(from the original quadratic complexity).

C Discussions of prior distributions

Choosing an appropriate prior for the latent representations in VAE is important for mediating be-
tween the encoder and decoder. The standard Gaussian N (0, I) is a commonly used prior assumption
because: (1) it is efficient without additional calculation overhead and (2) the input data are prepro-
cessed with standard normalization. We note that any other advanced approaches on prior learning
can be easily incorporated into our model. In the following, we take VampPrior [8] – which produces
prior distribution through the encoder Qϕ given pseudo inputs – as an example to show the effects of
different priors on the forecasting performance of LaST. The priors P (Zs) and P (Zt) are obtained
by Qϕs(Zs|I) and Qϕt(Zt|I), respectively, with identity matrix as pseudo inputs.

Table C1: Multivariate forecasting performance with different prior distributions.

Dataset ETTh1 ETTm1 Exchange Weather

48 336 720 48 288 672 48 336 720 48 336 720

Standard Gaussian MSE 0.351 0.566 0.740 0.280 0.392 0.491 0.056 0.430 1.521 0.131 0.257 0.315
MAE 0.380 0.512 0.650 0.329 0.403 0.466 0.162 0.482 0.898 0.174 0.285 0.327

VampPrior MSE 0.349 0.567 0.765 0.284 0.390 0.490 0.054 0.426 1.763 0.137 0.250 0.313
MAE 0.377 0.522 0.666 0.337 0.411 0.468 0.161 0.484 0.927 0.196 0.279 0.326

Table C1 shows the experimental results. We can see that VampPrior and standard Gaussian are well
matched in LaST on time series forecasting task. However, none shows clear superiority over the
other on four datasets. Thus, we use the standard Gaussian as the default prior in LaST due to its
efficiency.

D Existing upper bounds and the proposed ISTUB

We now discuss in detail the portion pertaining to the upper bounds (cf. Section 4 of the main paper).

3

D.1 Existing upper bounds

Existing research results have concluded several traceable and appropriate upper bounds to MI
between X and Y [9, 10, 11], they include:

IV UB(X,Y) = EP (X,Y)

[
logP (Y |X)

Q(Y)

]
, (D1)

IL1Out(X,Y) = E

[
1

B
B∑
i=1

[
log

P (Y (i)|X(i))
1

B−1

∑
j ̸=i P (Y (i)|X(j))

]]
, (D2)

ICLUB(X,Y) = EP (X,Y)[logP (Y |X)]− EP (X)P (Y)[logP (Y |X)], (D3)

where Q(Y) is usually a learned marginal density approximation to P (Y) and B is the batch
size. These upper bounds are all based on conditional distributions which, defined as Q(Zs|Zt) or
Q(Zt|Zs) in our LaST, are still untraceable and ineffective. Though we can replace them with joint
distribution via deductions, for example,

I(Zs, Zt) ≤ EQ(Zs,Zt)[logQ(Zs|Zt) + logQ(Zt)]− EQ(Zs)Q(Zt)[logQ(Zs|Zt) + logQ(Zt)]

= EQ(Zs,Zt)[logQ(Zs, Zt)]− EQ(Zs)Q(Zt)[logQ(Zs, Zt)], (D4)

it is challenging to establish a joint distribution and estimate its density directly without any additional
information [12].

D.2 Derivation of proposed upper bound ISTUB

To overcome the limitations of the existing upper bounds, we introduce a normalized energy-based
function that uses a critic γβ(Zs, Zt) over the variational joint distribution to estimate the probability:

Q(Zs, Zt) =
Q(Zs)Q(Zt)

Zβ
eγβ(Z

s,Zt), where Zβ = EQ(Zs)Q(Zt)[e
γβ(Z

s,Zt)]. (D5)

Applying this formula into Eq. (D4), we can obtain a traceable upper bound as:

I(Zs, Zt) ≤ EQ(Zs,Zt)[logQ(Zs) + logQ(Zt) + γβ(Z
s, Zt)− logZβ]

− EQ(Zs)Q(Zt)[logQ(Zs) + logQ(Zt) + γβ(Z
s, Zt)− logZβ]

= EQ(Zs,Zt)[γβ(Z
s, Zt)]− EQ(Zs)Q(Zt)[γβ(Z

s, Zt)] = ISTUB , (D6)

which helps us addressing the joint density calculation challenge.

4

E Complexity analysis and algorithm

This section presents the complexity analysis and, for completeness, also shows the pseudo-code of
the algorithms for training and prediction phases.

E.1 Complexity analysis

The corresponding time complexities of the components in LaST and are shown in Table E1. The
time complexity of seasonal and trend encoders/decoders are linear of fully connected network, i.e.,
O(Tnd), where n is the number of observations and d is the dimension of latent representation. For
the reconstruction phrase, calculations of autocorrelation and CORT incur O(nT log T) and O(nT)
time complexities, respectively. The MI upper and lower bounds are both based on the energy function
implemented by a 2-layer MLP, which has a time complexity of O(Td2). As for the predictor, the
time complexity of fast Fourier transform is equal to O(nT log T). The first FFN in trend forecasting
consumes O(nTτ), while the time complexity of other FFNs becomes O(τnd). We note that only
the encoders and predictor are required after training. Thus, the time complexity of training is
O(T (nd+ n log T + d2) + τ(nT + nd)) and that of prediction turns to O(nTτ + nT log T + τnd).

Table E1: Complexity analysis of main components in LaST.

Component Training Prediction Time Complexity

seasonal-trend encoder ! ! O(Tnd)

seasonal-trend decoder ! % O(Tnd)

reconstruction ! % O(nT log T)

MI estimation ! % O(Td2)

seasonal predictor ! ! O(nT log T + τnd)

trend predictor ! ! O(nTτ + τnd)

E.2 Algorithm of LaST

The pseudo-codes of LaST covering training and prediction phases are summarized in Algorithm E1
and E2, respectively.

Algorithm E1 Training phase of LaST.
Input:

Historical time series X1:T and future time series XT+1:T+τ ;
Hyperparameters and initialized parameters of LaST.

Output: LaST with optimized parameters.
1: for a mini-batch with size B consisting of {X(i), Y (i)}i∈B in training set do
2: Encode historical time series into latent seasonal-trend representations Zs and Zt;
3: Reconstruct seasonal and trend X̂s and X̂t from representations via decoders;
4: Calculate the reconstruction loss Lrec via autocorrelation and CORT (cf. Eq. (6));
5: Estimate the mutual information bounds via Eq. (9) and Eq. (11);
6: Derive the forecasting Y = X̂T+1:T+τ from Zs and Zt via predictor;
7: Calculate the MAE loss between X̂T+1:T+τ and XT+1:T+τ ;
8: Update parameters of LaST via Adam optimizer;
9: end until convergence

Algorithm E2 Prediction phase of LaST.
Input: Historical time series X1:T and optimized LaST;
Output: Predicted future time series X̂T+1:T+τ .

1: Encode historical time series into latent seasonal-trend representations Zs and Zt;
2: Derive the forecasting X̂T+1:T+τ from Zs and Zt via predictor;

5

F Experiment supplementary

In this section, we present more details of the baselines, computing infrastructure, dataset generation
process, and full experimental results on ETT benchmark (ETTh1, h2, m1, and m2). In addition, we
provide fluctuation analysis and memory cost comparison.

F.1 Details of baselines

The implementations and settings of the seven baselines are provided below. Unless otherwise
specified, we use the suggested settings described in the respective papers.

CoST [13]: analyses raw signals in time and frequency domain with temporal convolutions and
Fourier transform, and separately produces seasonal and trend representations for time series fore-
casting task. We run experiments with their publicly available code: https://github.com/
salesforce/CoST.

TS2Vec [14]: is a universal time series representation learning framework that performs contrastive
learning in a hierarchical way over augmented context views, which enables a robust contextual
representation for each timestamp. We run the code from their open source repository: https:
//github.com/yuezhihan/ts2vec.

TNC [15]: is a self-supervised framework that introduces the concept of a temporal neighbor-
hood with stationary properties and learns generalizable time series representations. We use their
open-source code: https://github.com/sanatonek/TNC_representation_learning. As for
hyperparameters, we set w = 0.005 in the loss function, mc_sample_size = 20, batch size as 8,
and learning rate as 10−3 with Adam optimizer.

VAE-GRU [16]: combines the strengths of recurrent network and stochastic gradient variational
Bayes, which has been applied for time series forecasting among various domains [17, 18]. We
implement it by the GRU [19] variant with initial state sampling from N (0, I) and keep the variational
settings consistent with our LaST.

Autoformer [20]: designs a novel decomposition architecture with an autocorrelation mechanism
to improve Transformer [21]. It exploits average pooling strategy to split time series into seasonal
and trend components and regards autocorrelation coefficient as attention score, which boosts the
performance of long-term forecasting. We use their publicly available code: https://github.com/
thuml/Autoformer.

Informer [22]: designs an efficient transformer-based model for time series forecasting with a
ProbSparse self-attention mechanism, highlights distilling module, and generative style decoder. We
use the publicly available code: https://github.com/zhouhaoyi/Informer2020.

TCN [23]: introduces an architecture that is applied across all tasks for sequence modeling. It
is also popular in time series modeling and forecasting [24, 25]. We use their public repository:
https://github.com/locuslab/TCN and set kernel sizes as {21, 22, · · · , 27}.

F.2 Evaluation environment

LaST is implemented by PyTorch and all experiments are run on a server with a Intel Xeon
Platinum 8124M CPU, a RTX-3090 GPU, and 128GB memory.

F.3 Synthetic dataset generation

Following the method in [13], we synthesize time series with sinusoidal seasonal patterns, as
well as linear and non-linear trend patterns. The seasonal signal consists of three sine waves
with the following period, phase, and amplitudes: {(20, 3, 0), (50, 3, 0.2), (100, 3, 0.5)}. The trend
signal is composed of two components: (1) a nonlinear, saturating pattern Xt =

1
1+exp β0(t−β1)

,
where β0 = 0.2 and β1 = 200; (2) an ARMA process whose parameters of AR and MA are
{(0.9,−0.1), (0.2,−0.5)}. The final time series is generated by the sum of these seasonal and trend
signals.

6

https://github.com/salesforce/CoST
https://github.com/salesforce/CoST
https://github.com/yuezhihan/ts2vec
https://github.com/yuezhihan/ts2vec
https://github.com/sanatonek/TNC_representation_learning
https://github.com/thuml/Autoformer
https://github.com/thuml/Autoformer
https://github.com/zhouhaoyi/Informer2020
https://github.com/locuslab/TCN

F.4 More results on ETT benchmark

Table F1: Performance comparisons on univariate forecasting on complete ETT benchmark. Best
performance is highlighted in bold font and the second best results are underlined.

Method LaST CoST TS2Vec TNC VAE-GRU Autoformer Informer TCN
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.030 0.131 0.040 0.152 0.039 0.151 0.057 0.184 0.042 0.155 0.057 0.189 0.098 0.247 0.104 0.254
48 0.051 0.169 0.060 0.186 0.062 0.189 0.094 0.239 0.077 0.218 0.070 0.207 0.158 0.319 0.206 0.366
168 0.078 0.211 0.097 0.236 0.142 0.291 0.171 0.329 0.172 0.344 0.108 0.260 0.183 0.346 0.462 0.586
336 0.100 0.246 0.112 0.258 0.160 0.316 0.179 0.345 0.140 0.301 0.119 0.281 0.222 0.387 0.422 0.564
720 0.138 0.298 0.148 0.306 0.179 0.345 0.235 0.408 0.204 0.381 0.109 0.264 0.269 0.435 0.438 0.578

E
T

T
h2

24 0.070 0.197 0.079 0.207 0.097 0.230 0.097 0.238 0.073 0.202 0.112 0.259 0.093 0.240 0.109 0.251
48 0.099 0.239 0.118 0.259 0.124 0.274 0.131 0.281 0.110 0.252 0.122 0.269 0.155 0.314 0.147 0.302
168 0.169 0.321 0.189 0.339 0.198 0.355 0.197 0.354 0.179 0.340 0.178 0.331 0.232 0.389 0.209 0.366
336 0.202 0.362 0.206 0.360 0.205 0.364 0.207 0.366 0.219 0.370 0.236 0.386 0.263 0.417 0.237 0.391
720 0.247 0.404 0.214 0.371 0.208 0.371 0.207 0.370 0.294 0.439 0.284 0.427 0.277 0.431 0.200 0.367

E
T

T
m

1

24 0.011 0.077 0.015 0.088 0.016 0.093 0.019 0.103 0.013 0.082 0.022 0.115 0.030 0.137 0.027 0.127
48 0.021 0.108 0.025 0.117 0.028 0.126 0.045 0.162 0.026 0.120 0.032 0.138 0.069 0.203 0.040 0.154
96 0.033 0.134 0.038 0.147 0.045 0.162 0.054 0.178 0.046 0.164 0.045 0.168 0.194 0.372 0.097 0.246
288 0.069 0.197 0.077 0.209 0.095 0.235 0.142 0.290 0.127 0.294 0.071 0.207 0.401 0.554 0.305 0.455
672 0.100 0.239 0.113 0.257 0.142 0.290 0.136 0.290 0.217 0.399 0.102 0.254 0.512 0.644 0.445 0.576

E
T

T
m

2

24 0.026 0.108 0.027 0.112 0.038 0.139 0.045 0.151 0.030 0.113 0.076 0.208 0.036 0.141 0.048 0.153
48 0.051 0.157 0.054 0.159 0.069 0.194 0.080 0.201 0.052 0.163 0.115 0.260 0.069 0.200 0.063 0.191
96 0.069 0.191 0.072 0.196 0.089 0.225 0.094 0.229 0.073 0.200 0.091 0.230 0.095 0.240 0.129 0.265
288 0.119 0.260 0.137 0.279 0.153 0.307 0.161 0.306 0.155 0.309 0.169 0.320 0.211 0.367 0.208 0.352
672 0.171 0.318 0.183 0.329 0.201 0.357 0.197 0.352 0.201 0.357 0.197 0.346 0.267 0.417 0.222 0.377

Table F2: Performance comparisons on multivariate forecasting on complete ETT benchmark. Best
performance is highlighted in bold font and the second best results are underlined.

Method LaST CoST TS2Vec TNC VAE-GRU AutoFormer Informer TCN
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.324 0.368 0.386 0.429 0.590 0.531 0.708 0.592 0.529 0.534 0.384 0.428 0.577 0.549 0.583 0.547
48 0.351 0.380 0.437 0.464 0.624 0.555 0.749 0.619 0.612 0.593 0.392 0.419 0.685 0.625 0.670 0.606
168 0.468 0.453 0.643 0.582 0.762 0.639 0.884 0.699 0.758 0.674 0.490 0.481 0.931 0.752 0.811 0.680
336 0.566 0.512 0.812 0.679 0.931 0.728 1.020 0.768 0.844 0.692 0.505 0.484 1.128 0.873 1.132 0.815
720 0.758 0.659 0.970 0.771 1.063 0.799 1.157 0.830 1.045 0.816 0.498 0.500 1.215 0.896 1.165 0.813

E
T

T
h2

24 0.175 0.272 0.447 0.502 0.423 0.489 0.612 0.595 0.267 0.364 0.261 0.341 0.720 0.665 0.935 0.754
48 0.229 0.312 0.699 0.637 0.619 0.605 0.840 0.716 0.523 0.529 0.312 0.373 1.457 1.001 1.300 0.911
168 0.722 0.609 1.549 0.982 1.845 1.074 2.359 1.213 2.519 1.301 0.457 0.455 3.489 1.515 4.017 1.579
336 1.261 0.828 1.749 1.042 2.194 1.197 2.782 1.349 3.589 1.577 0.471 0.475 2.723 1.340 3.460 1.456
720 1.780 1.094 1.971 1.092 2.636 1.370 2.753 1.394 3.788 1.683 0.474 0.484 3.467 1.473 3.106 1.381

E
T

T
m

1

24 0.218 0.289 0.246 0.329 0.453 0.444 0.522 0.472 0.509 0.534 0.383 0.403 0.453 0.444 0.522 0.472
48 0.280 0.329 0.331 0.386 0.592 0.521 0.695 0.567 0.642 0.543 0.454 0.453 0.494 0.503 0.542 0.508
96 0.323 0.360 0.378 0.419 0.635 0.554 0.731 0.595 0.600 0.540 0.481 0.463 0.678 0.614 0.666 0.578
288 0.392 0.403 0.472 0.486 0.693 0.597 0.818 0.649 0.769 0.678 0.634 0.528 1.056 0.786 0.991 0.735
672 0.491 0.466 0.620 0.574 0.782 0.653 0.932 0.712 0.799 0.673 0.606 0.542 1.192 0.926 1.032 0.756

E
T

T
m

2

24 0.102 0.206 0.141 0.282 0.179 0.296 0.185 0.297 0.178 0.306 0.153 0.261 0.173 0.301 0.180 0.324
48 0.135 0.237 0.209 0.347 0.243 0.352 0.264 0.360 0.214 0.332 0.178 0.280 0.303 0.409 0.204 0.327
96 0.182 0.274 0.325 0.436 0.336 0.415 0.389 0.458 0.279 0.375 0.255 0.339 0.365 0.453 3.041 1.330
288 0.299 0.360 0.816 0.698 0.707 0.632 0.920 0.788 0.809 0.691 0.342 0.378 1.047 0.804 3.162 1.337
672 0.790 0.611 1.633 1.025 1.801 1.022 2.164 1.135 1.838 1.038 0.434 0.430 3.126 1.302 3.624 1.484

7

F.5 Fluctuation analysis

To validate the models’ robustness, we conduct fluctuation analysis and have three runs of all the
experiments with different seeds for baselines and LaST. Table F3 reports the performance results in
terms of MSE and MAE with standard deviations.

Table F3: Standard deviations results on multivariate forecasting.

Method LaST CoST VAE-GRU AutoFormer
MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.324 ±0.003 0.368 ±0.004 0.386 ±0.006 0.429 ±0.005 0.529 ±0.016 0.531 ±0.013 0.384 ±0.020 0.428 ±0.017
48 0.351 ±0.002 0.380 ±0.003 0.437 ±0.003 0.464 ±0.006 0.612 ±0.019 0.593 ±0.010 0.392 ±0.020 0.419 ±0.026
168 0.468 ±0.004 0.453 ±0.004 0.643 ±0.018 0.582 ±0.011 0.758 ±0.035 0.647 ±0.031 0.490 ±0.016 0.481 ±0.009
336 0.566 ±0.002 0.512 ±0.003 0.812 ±0.003 0.679 ±0.008 0.844 ±0.030 0.692 ±0.028 0.505 ±0.013 0.484 ±0.015
720 0.758 ±0.001 0.659 ±0.001 0.970 ±0.030 0.771 ±0.006 1.045 ±0.014 0.816 ±0.015 0.498 ±0.011 0.500 ±0.012

E
T

T
m

1

24 0.218 ±0.002 0.289 ±0.001 0.246 ±0.018 0.329 ±0.010 0.509 ±0.023 0.402 ±0.027 0.383 ±0.030 0.403 ±0.035
48 0.280 ±0.003 0.329 ±0.005 0.331 ±0.024 0.386 ±0.008 0.642 ±0.026 0.543 ±0.028 0.454 ±0.029 0.453 ±0.038
96 0.323 ±0.001 0.360 ±0.001 0.378 ±0.023 0.419 ±0.012 0.600 ±0.022 0.540 ±0.020 0.481 ±0.018 0.463 ±0.020
288 0.392 ±0.003 0.403 ±0.027 0.472 ±0.011 0.486 ±0.007 0.769 ±0.038 0.678 ±0.019 0.634 ±0.024 0.528 ±0.016
672 0.491 ±0.006 0.466 ±0.002 0.620 ±0.029 0.574 ±0.010 0.799 ±0.008 0.673 ±0.010 0.606 ±0.010 0.542 ±0.014

E
le

ct
ri

ci
ty 24 0.125 ±0.002 0.222 ±0.003 0.136 ±0.006 0.242 ±0.005 0.190 ±0.004 0.250 ±0.002 0.165 ±0.002 0.286 ±0.004

48 0.146 ±0.001 0.245 ±0.001 0.153 ±0.002 0.258 ±0.003 0.228 ±0.003 0.280 ±0.005 0.178 ±0.007 0.295 ±0.010
168 0.170 ±0.002 0.265 ±0.003 0.175 ±0.005 0.275 ±0.008 0.240 ±0.005 0.297 ±0.009 0.215 ±0.003 0.327 ±0.004
336 0.188 ±0.006 0.280 ±0.004 0.196 ±0.005 0.296 ±0.005 0.262 ±0.007 0.318 ±0.007 0.218 ±0.006 0.329 ±0.004
720 0.223 ±0.003 0.309 ±0.002 0.232 ±0.008 0.327 ±0.003 0.296 ±0.004 0.347 ±0.003 0.252 ±0.007 0.356 ±0.008

E
xc

ha
ng

e 24 0.033 ±0.001 0.122 ±0.001 0.033 ±0.003 0.127 ±0.009 0.064 ±0.004 0.178 ±0.005 0.060 ±0.008 0.178 ±0.007
48 0.056 ±0.001 0.162 ±0.002 0.058 ±0.002 0.165 ±0.004 0.133 ±0.007 0.262 ±0.010 0.091 ±0.010 0.222 ±0.009
168 0.190 ±0.009 0.320 ±0.003 0.198 ±0.015 0.327 ±0.008 0.334 ±0.013 0.432 ±0.012 0.405 ±0.017 0.473 ±0.013
336 0.430 ±0.018 0.482 ±0.016 0.512 ±0.026 0.523 ±0.013 0.614 ±0.030 0.606 ±0.024 0.509 ±0.041 0.524 ±0.016
720 1.521 ±0.162 0.898 ±0.105 1.855 ±0.103 0.998 ±0.037 2.285 ±0.078 1.117 ±0.054 1.447 ±0.084 0.941 ±0.028

W
ea

th
er

24 0.105 ±0.005 0.134 ±0.004 0.293 ±0.013 0.369 ±0.009 0.117 ±0.004 0.147 ±0.002 0.180 ±0.015 0.263 ±0.018
48 0.131 ±0.006 0.174 ±0.006 0.558 ±0.020 0.515 ±0.014 0.227 ±0.008 0.270 ±0.003 0.241 ±0.010 0.310 ±0.012
168 0.197 ±0.010 0.238 ±0.011 0.812 ±0.033 0.671 ±0.026 0.234 ±0.007 0.280 ±0.005 0.295 ±0.027 0.355 ±0.023
336 0.257 ±0.013 0.285 ±0.014 1.196 ±0.024 0.832 ±0.022 0.309 ±0.022 0.339 ±0.015 0.359 ±0.035 0.395 ±0.031
720 0.315 ±0.003 0.327 ±0.009 1.620 ±0.036 1.002 ±0.020 0.444 ±0.037 0.410 ±0.024 0.419 ±0.017 0.428 ±0.014

F.6 Convergence

Epoch Epoch Epoch Epoch

(a) ETTh1 (=24)
<latexit sha1_base64="/ClPItL0JODBCWiQOBsuVfCKtbg=">AAAB63icbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMFawttKJvtpl26uwm7E6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvTAQ36HnfTmlldW19o7xZ2dre2d2r7h88mjjVlLVoLGLdCYlhgivWQo6CdRLNiAwFa4fj29xvPzFteKwecJKwQJKh4hGnBHOphyTtV2te3ZvBXSZ+QWpQoNmvfvUGMU0lU0gFMabrewkGGdHIqWDTSi81LCF0TIasa6kikpkgm906dU+sMnCjWNtS6M7U3xMZkcZMZGg7JcGRWfRy8T+vm2J0HWRcJSkyReeLolS4GLv54+6Aa0ZRTCwhVHN7q0tHRBOKNp6KDcFffHmZPJ7V/cv6+f1FrXFTxFGGIziGU/DhChpwB01oAYURPMMrvDnSeXHenY95a8kpZg7hD5zPHyPJjlA=</latexit>⌧ (b) ETTh1 (=168)

<latexit sha1_base64="/ClPItL0JODBCWiQOBsuVfCKtbg=">AAAB63icbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMFawttKJvtpl26uwm7E6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvTAQ36HnfTmlldW19o7xZ2dre2d2r7h88mjjVlLVoLGLdCYlhgivWQo6CdRLNiAwFa4fj29xvPzFteKwecJKwQJKh4hGnBHOphyTtV2te3ZvBXSZ+QWpQoNmvfvUGMU0lU0gFMabrewkGGdHIqWDTSi81LCF0TIasa6kikpkgm906dU+sMnCjWNtS6M7U3xMZkcZMZGg7JcGRWfRy8T+vm2J0HWRcJSkyReeLolS4GLv54+6Aa0ZRTCwhVHN7q0tHRBOKNp6KDcFffHmZPJ7V/cv6+f1FrXFTxFGGIziGU/DhChpwB01oAYURPMMrvDnSeXHenY95a8kpZg7hD5zPHyPJjlA=</latexit>⌧ (c) ETTm1 (=24)
<latexit sha1_base64="/ClPItL0JODBCWiQOBsuVfCKtbg=">AAAB63icbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMFawttKJvtpl26uwm7E6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvTAQ36HnfTmlldW19o7xZ2dre2d2r7h88mjjVlLVoLGLdCYlhgivWQo6CdRLNiAwFa4fj29xvPzFteKwecJKwQJKh4hGnBHOphyTtV2te3ZvBXSZ+QWpQoNmvfvUGMU0lU0gFMabrewkGGdHIqWDTSi81LCF0TIasa6kikpkgm906dU+sMnCjWNtS6M7U3xMZkcZMZGg7JcGRWfRy8T+vm2J0HWRcJSkyReeLolS4GLv54+6Aa0ZRTCwhVHN7q0tHRBOKNp6KDcFffHmZPJ7V/cv6+f1FrXFTxFGGIziGU/DhChpwB01oAYURPMMrvDnSeXHenY95a8kpZg7hD5zPHyPJjlA=</latexit>⌧ (d) ETTm1 (=168)

<latexit sha1_base64="/ClPItL0JODBCWiQOBsuVfCKtbg=">AAAB63icbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMFawttKJvtpl26uwm7E6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvTAQ36HnfTmlldW19o7xZ2dre2d2r7h88mjjVlLVoLGLdCYlhgivWQo6CdRLNiAwFa4fj29xvPzFteKwecJKwQJKh4hGnBHOphyTtV2te3ZvBXSZ+QWpQoNmvfvUGMU0lU0gFMabrewkGGdHIqWDTSi81LCF0TIasa6kikpkgm906dU+sMnCjWNtS6M7U3xMZkcZMZGg7JcGRWfRy8T+vm2J0HWRcJSkyReeLolS4GLv54+6Aa0ZRTCwhVHN7q0tHRBOKNp6KDcFffHmZPJ7V/cv6+f1FrXFTxFGGIziGU/DhChpwB01oAYURPMMrvDnSeXHenY95a8kpZg7hD5zPHyPJjlA=</latexit>⌧

Figure F1: Train, valid, and test losses changes in the training process.

Iter ()
<latexit sha1_base64="IKixoPVWzf/vdN50lvTOf5KNkGc=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGC/YA0ls120y7dbMLuRCilP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdgqbu/s7u2XDg6bJsk04w2WyES3Q2q4FIo3UKDk7VRzGoeSt8Lh7dRvPXFtRKIecJTyIKZ9JSLBKFrJ76CIuSGe+1jtlspuxZ2BLBMvJ2XIUe+Wvjq9hGUxV8gkNcb33BSDMdUomOSTYiczPKVsSPvct1RRuykYz06ekFOr9EiUaFsKyUz9PTGmsTGjOLSdMcWBWfSm4n+en2F0HYyFSjPkis0XRZkkmJDp/6QnNGcoR5ZQpoW9lbAB1ZShTaloQ/AWX14mzWrFu6yc31+Uazd5HAU4hhM4Aw+uoAZ3UIcGMEjgGV7hzUHnxXl3PuatK04+cwR/4Hz+AB25kH8=</latexit>

⇥102 Iter ()
<latexit sha1_base64="IKixoPVWzf/vdN50lvTOf5KNkGc=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGC/YA0ls120y7dbMLuRCilP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdgqbu/s7u2XDg6bJsk04w2WyES3Q2q4FIo3UKDk7VRzGoeSt8Lh7dRvPXFtRKIecJTyIKZ9JSLBKFrJ76CIuSGe+1jtlspuxZ2BLBMvJ2XIUe+Wvjq9hGUxV8gkNcb33BSDMdUomOSTYiczPKVsSPvct1RRuykYz06ekFOr9EiUaFsKyUz9PTGmsTGjOLSdMcWBWfSm4n+en2F0HYyFSjPkis0XRZkkmJDp/6QnNGcoR5ZQpoW9lbAB1ZShTaloQ/AWX14mzWrFu6yc31+Uazd5HAU4hhM4Aw+uoAZ3UIcGMEjgGV7hzUHnxXl3PuatK04+cwR/4Hz+AB25kH8=</latexit>

⇥102

(a) ETTm1 (=24)<latexit sha1_base64="/ClPItL0JODBCWiQOBsuVfCKtbg=">AAAB63icbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMFawttKJvtpl26uwm7E6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvTAQ36HnfTmlldW19o7xZ2dre2d2r7h88mjjVlLVoLGLdCYlhgivWQo6CdRLNiAwFa4fj29xvPzFteKwecJKwQJKh4hGnBHOphyTtV2te3ZvBXSZ+QWpQoNmvfvUGMU0lU0gFMabrewkGGdHIqWDTSi81LCF0TIasa6kikpkgm906dU+sMnCjWNtS6M7U3xMZkcZMZGg7JcGRWfRy8T+vm2J0HWRcJSkyReeLolS4GLv54+6Aa0ZRTCwhVHN7q0tHRBOKNp6KDcFffHmZPJ7V/cv6+f1FrXFTxFGGIziGU/DhChpwB01oAYURPMMrvDnSeXHenY95a8kpZg7hD5zPHyPJjlA=</latexit>⌧ (b) ETTm1 (=168)<latexit sha1_base64="/ClPItL0JODBCWiQOBsuVfCKtbg=">AAAB63icbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMFawttKJvtpl26uwm7E6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvTAQ36HnfTmlldW19o7xZ2dre2d2r7h88mjjVlLVoLGLdCYlhgivWQo6CdRLNiAwFa4fj29xvPzFteKwecJKwQJKh4hGnBHOphyTtV2te3ZvBXSZ+QWpQoNmvfvUGMU0lU0gFMabrewkGGdHIqWDTSi81LCF0TIasa6kikpkgm906dU+sMnCjWNtS6M7U3xMZkcZMZGg7JcGRWfRy8T+vm2J0HWRcJSkyReeLolS4GLv54+6Aa0ZRTCwhVHN7q0tHRBOKNp6KDcFffHmZPJ7V/cv6+f1FrXFTxFGGIziGU/DhChpwB01oAYURPMMrvDnSeXHenY95a8kpZg7hD5zPHyPJjlA=</latexit>⌧

Figure F2: Train, valid, and test losses changes at the first epoch.

We conduct additional experiments to validate the convergence property of our model. Figure F1
shows the descending process of training, valid, and test loss of our model as the epochs increase,
where we can see that all losses first drop and then goes to level off. The downward trend is not
obvious on ETTm1 dataset. This is because ETTm1 is a larger-scale dataset and it requires over
1,000 times stochastic gradient descent at every epoch. We visualize the losses change at the first

8

epoch in figure F2. We can observe that losses drop a lot at the first epoch. These results support that
our model converges well on real-world datasets.

F.7 Memory cost

We keep the batch size B, input length T and forecasting length τ consistent among baselines and
LaST, and report the memory cost of in Table F4, where we can observe that LaST is ∼30% more
memory-efficient than CoST and over 40% more memory-efficient than AutoFormer. CoST contains
multiple TCNs with different kernel sizes, which enable it to collect multi-horizon information, but
lead the memory consumption to multiply. Transformer-based Autoformer establishes the correlations
between every time step, which captures the long-term dependencies but incurs O((T + τ)2) space
complexity. For example, AutoFormer on Weather dataset with {B = 32, T = 201, τ = 720}
allocates 9045MB memory while LaST only needs 1751MB of memory. Based on variational
inference theory, our proposed LaST model regards the time series as a whole and extracts seasonal
and trend without additional memory consumption.

Table F4: Memory usage (MB) comparisons among different methods.

Batch size 16 32
Input length 96 201 96 201

Output length 48 168 720 48 168 720 48 168 720 48 168 720

LaST ETTh1 1071 1073 1149 1127 1139 1383 1133 1175 1317 1245 1403 1741
Weather 1075 1081 1175 1131 1167 1395 1139 1187 1337 1255 1407 1751

CoST ETTh1 1597 1597 1597 1909 1909 1909 1759 1759 1759 1977 1977 1977
Weather 1598 1598 1598 1911 1911 1911 1791 1761 1761 1981 1981 1981

AutoFormer ETTh1 1831 2501 4371 2209 2857 4771 2433 3477 8213 3263 4213 9035
Weather 1833 2505 4381 2211 2859 4777 2437 3481 8229 3265 4219 9045

References
[1] Michail Vlachos, Philip Yu, and Vittorio Castelli. On periodicity detection and structural periodic similarity.

In Proceedings of the 2005 SIAM international conference on data mining, pages 449–460. SIAM, 2005.

[2] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

[3] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and Devon Hjelm. Mutual information neural estimation. In International conference on
machine learning, pages 531–540. PMLR, 2018.

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, ICLR, 2015.

[5] Harry Nyquist. Certain topics in telegraph transmission theory. Transactions of the American Institute of
Electrical Engineers, 47(2):617–644, 1928.

[6] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex Fourier series.
Mathematics of computation, 19(90):297–301, 1965.

[7] Norbert Wiener, Norbert Wiener, Cyberneticist Mathematician, Norbert Wiener, Norbert Wiener, and
Cybernéticien Mathématicien. Extrapolation, interpolation, and smoothing of stationary time series: with
engineering applications, volume 113. MIT press Cambridge, MA, 1949.

[8] Jakub Tomczak and Max Welling. Vae with a vampprior. In International Conference on Artificial
Intelligence and Statistics, pages 1214–1223. PMLR, 2018.

[9] Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information
bottleneck. arXiv preprint arXiv:1612.00410, 2016.

[10] Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational bounds of
mutual information. In International Conference on Machine Learning, pages 5171–5180. PMLR, 2019.

[11] Pengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang Liu, Zhe Gan, and Lawrence Carin. Club: A
contrastive log-ratio upper bound of mutual information. In International conference on machine learning,
pages 1779–1788. PMLR, 2020.

9

[12] Malik Magdon-Ismail and Amir Atiya. Neural networks for density estimation. In Advances in Neural
Information Processing Systems, volume 11, 1998.

[13] Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Cost: Contrastive learning of
disentangled seasonal-trend representations for time series forecasting. In International Conference on
Learning Representations, 2022.

[14] Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and Bixiong
Xu. Ts2vec: Towards universal representation of time series. In Proceedings of AAAI, 2022.

[15] Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning for time
series with temporal neighborhood coding. In International Conference on Learning Representations,
2021.

[16] Otto Fabius, Joost R van Amersfoort, and Diederik P Kingma. Variational recurrent auto-encoders. In
ICLR (Workshop), 2015.

[17] Jacob Walker, Kenneth Marino, Abhinav Gupta, and Martial Hebert. The pose knows: Video forecasting
by generating pose futures. In Proceedings of the IEEE international conference on computer vision, pages
3332–3341, 2017.

[18] Abdelhafid Zeroual, Fouzi Harrou, Abdelkader Dairi, and Ying Sun. Deep learning methods for forecasting
covid-19 time-series data: A comparative study. Chaos, Solitons & Fractals, 140:110121, 2020.

[19] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[20] Jiehui Xu, Jianmin Wang, Mingsheng Long, et al. Autoformer: Decomposition transformers with auto-
correlation for long-term series forecasting. Advances in Neural Information Processing Systems, 34,
2021.

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[22] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of AAAI,
2021.

[23] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

[24] Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. Think globally, act locally: A deep neural network
approach to high-dimensional time series forecasting. Advances in neural information processing systems,
32, 2019.

[25] Shumin Deng, Ningyu Zhang, Wen Zhang, Jiaoyan Chen, Jeff Z Pan, and Huajun Chen. Knowledge-driven
stock trend prediction and explanation via temporal convolutional network. In Companion Proceedings of
The 2019 World Wide Web Conference, pages 678–685, 2019.

10

	Proofs
	Inference of ELBO with decomposition
	Proof of the alternative of reconstruction loss
	Biased gradient of MINE

	Discrete Fourier transform and autocorrelation
	Discrete Fourier Transform
	Efficient autocorrelation

	Discussions of prior distributions
	Existing upper bounds and the proposed ISTUB
	Existing upper bounds
	Derivation of proposed upper bound ISTUB

	Complexity analysis and algorithm
	Complexity analysis
	Algorithm of LaST

	Experiment supplementary
	Details of baselines
	Evaluation environment
	Synthetic dataset generation
	More results on ETT benchmark
	Fluctuation analysis
	Convergence
	Memory cost

