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Counterfactual Graph Learning for Anomaly
Detection on Attributed Networks

Chunjing Xiao , Xovee Xu , Graduate Student Member, IEEE, Yue Lei, Kunpeng Zhang ,
Siyuan Liu , and Fan Zhou

Abstract—Graph anomaly detection is attracting remarkable
multidisciplinary research interests ranging from finance, health-
care, and social network analysis. Recent advances on graph neural
networks have substantially improved the detection performance
via semi-supervised representation learning. However, prior work
suggests that deep graph-based methods tend to learn spurious
correlations. As a result, they fail to generalize beyond training
data distribution. In this article, we aim to identify structural and
contextual anomaly nodes in an attributed graph. Based on our
preliminary data analyses, spurious correlations can be eliminated
with causal subgraph interventions. Therefore, we propose a new
graph-based anomaly detection model that can learn causal re-
lations for anomaly detection while generalizing to new environ-
ments. To handle situations with varying environments, we steer the
generative model to manufacture synthetic environment features,
which are exerted on realistic subgraphs to generate counterfactual
subgraphs. Further, these counterfactual subgraphs help a few-shot
anomaly detection model learn transferable and causal relations
across different environments. The experiments on three real-world
attributed graphs show that the proposed approach achieves the
best performance compared to the state-of-the-art baselines and
learns robust causal representations resistant to noises and spuri-
ous correlations.

Index Terms—Causal inference, causal representation, counter-
factual, network anomaly detection, representation learning.

I. INTRODUCTION

ANOMALY detection on an attributed network – identify-
ing abnormal nodes in a network where node attributes are
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provided, is an important task in both academia and industry.
Anomaly nodes in the network are considered as data objects
deviating dramatically from the majority regarding structures
and/or properties. Anomaly detection has a wide range of
applications from detecting network attacks in cybersecurity,
inspecting fraudulent transactions in finance, recognizing mali-
cious senders in email networks, and to investigating diseases in
healthcare [1]. Recently, remarkable improvements have been
achieved by taking advantage of different deep learning tech-
niques, such as Transformers [2], autoencoders [3], GANs [4]
and few-show learning [5]. Despite the improvements achieved,
existing methods still struggle in generalization beyond training
data distribution. As a result, a well-trained model might suffer
from performance degradation when applied to newly observed
nodes with different environments [6].

The performance degradation can be attributed to data bi-
ases [7] and shortcut learning [8], which means that deep learn-
ing models are prone to learn dataset-dependent spurious corre-
lations based on statistical associations [9]. These characteristics
become problematic when the distribution of test data is different
from training data. For example, for network anomaly detection
tasks, the test samples can be newly observed nodes or those
whose neighboring nodes and edges change over time. Their
environments (e.g., subgraph topology and types of neighboring
nodes) might be essentially different from the training samples.
The model, which is trained by learning dataset-dependent cor-
relations on training data, may not be able to obtain expected
performance on test data.

Existing work has shown that, besides statistical associa-
tions between variables, learning causal relations can efficiently
alleviate this performance degradation problem in the field
of image processing [10], [11], [12]. Causal relations reflect
the fundamental data generating mechanism, which tends to
be universal and invariant across different environments [13],
and provides the most transferable and confident information
to unseen environments. Learning a representation exposing
causal relations, which may confront different environmental
changes and interventions, can make the model more robust and
generalized. However, inferring causality between data variables
remains extremely difficult or even impossible [14].

In this article, we take a first attempt towards causal
graph learning and propose a CounterFactual graph Anomaly
Detection (CFAD) model, which tries to learn causal rela-
tions to train a robust model for detecting the anomalies on
attributed networks. Based on the concept of Structural Causal
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Models [15], [16], we interpret the generation of a node’s
representation by graph neural networks (GNNs) as a causal
process. The research of causal explanations for GNNs [17]
and our preliminary data analyses suggest that spurious cor-
relations can be eliminated by splitting the neighbors of a node
into important ones which can influence the semantics of this
node, and non-important ones which can, to an extent, affect
predictive outputs but hardly change the node’s abnormality,
e.g., topology and node roles in the graph. Hence, we decom-
pose this process into two mechanisms: core feature generation
and environment feature generation. According to the learning
process of GNNs that node representations are produced by
aggregating neighboring nodes in the graph [18], we assume that
the core feature is extracted based on itself and its important
neighborhood, which comprises the core subgraph, and the
environment feature is extracted based on other insignificant
neighborhood, which comprises the environment subgraph. We
steer a generative model to manufacture synthetic environment
subgraphs and then generate counterfactual subgraphs, i.e., un-
seen combinations of core subgraphs and synthetic environment
subgraphs. Subsequently, we train an anomaly detection model
based on the generated counterfactual subgraphs, such that the
model can learn transferable and causal relations across different
environments.

Specifically, in the CFAD framework, we first devise a
Granger causality-based [19] causal explanation method to ex-
tract the core subgraph for a given node without requiring anno-
tation information, according to the idea that causal explanations
can extract a subgraph which is considered the main cause
of the corresponding prediction [17], [20]. Then, we design
a generator that takes random noises as input and outputs a
group of synthetic node representations, each representation is
corresponding to a node in the environment subgraph. Next,
we combine the synthetic representations of environment nodes
with the real representations of core nodes and decode the
combined representations into a subgraph, which we call the
counterfactual subgraph. Finally, we build a counterfactual
subgraph-based contrasting loss and consistency regularization
term for a few-shot anomaly detection model, which can ac-
curately detect anomalies by learning causal relations across
different environments using a few labeled anomalies. The main
contribution of our work is threefold:
� We contribute to the literature by proposing a novel coun-

terfactual graph-based anomaly detection model CFAD,
which can learn causal relations to enhance the anomaly
detection performance with varying environments. To the
best of our knowledge, this is the first model to learn
causal representations and eliminate spurious correlations
in anomaly detection.

� We generate counterfactual subgraphs by steering a gener-
ative model to perform interventions on real subgraphs, and
illustrate the effectiveness and efficiency of counterfactual
subgraphs by utilizing them to train an anomaly detection
model. We theoretically and empirically show that CFAD’s
counterfactual subgraphs and generative interventions can
help alleviate the spurious correlations between nodes in
graph and learn robust causal node representations for
better computing the anomaly scores.

TABLE I
MATHEMATICAL NOTATIONS

� Extensive experiments are conducted on real-world
datasets to demonstrate the advantages of CFAD over
several state-of-the-art baselines, which verifies our mo-
tivation that providing causality in anomaly detection can
help us learn general and robust models.

II. PRELIMINARIES

We now formulate the graph anomaly detection problem and
give the definitions for three types of subgraphs, which will serve
as background in our CFAD framework.

A. Problem Formulation

Following the commonly used notations, we use calligraphic
fonts, bold lowercase letters, and bold uppercase letters to
denote sets (e.g., V), vectors (e.g., x), and matrices (e.g.,
X), respectively. Notations are listed in Table I for refer-
ence. In general, an attributed network can be represented by
G = (V, E ,X), where V = {v1, v2, . . ., vn} denotes the set of
nodes, E = {e1, e2, . . ., em} denotes the set of edges, and X =
{x1,x2, . . .,xn} ∈ R

n×h denotes the set of node attributes. A
binary adjacency matrix A ∈ R

n×n is employed to denote the
structure information of the attributed network, where Ai,j = 1
if there is a link between nodes vi and vj ; otherwise Ai,j = 0.
Since the information of V and E is both contained by A, an
attributed network can also be denoted as G = (A,X). Accord-
ingly, the anomaly detection problem on attributed networks is
given as follows:

Problem 1 (Anomaly Detection on Attributed Networks).
Given an attributed network G = (V, E ,X), we aim to learn
an anomaly score function f to calculate the anomaly score
si = f(vi) for each node in V . Anomaly score si represents
the degree of abnormality of node vi. By ranking all the nodes
with their anomaly scores, the anomaly nodes can be detected
according to their positions.

B. Term Definitions

Next, we define three types of subgraphs used for counter-
factual graph learning, i.e., local subgraphs, core subgraphs and
environment subgraphs.

Definition 1 (Local Subgraphs). For a given node v, its local
subgraph is defined as Gl = (V l, E l,Xl) where V l is the set of
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nodes within l-hop neighbors of v. E l andXl are the correspond-
ing edge set and attribute matrix associated with V l individually.

Definition 2 (Core Subgraphs). For a given node v, its core
subgraph can be denoted as Gc = (Vc, Ec,Xc) where Vc is the
set of the most relevant nodes for the prediction (outcome) of
a given classification model. Ec and Xc are the corresponding
edge set and attribute matrix associated with Vc, respectively.

Definition 3 (Environment Subgraphs). For a given node v, its
environment subgraph is denoted as Ge = (Ve, Ee,Xe) where
Ve is the difference set between V l and Vc, i.e., Ve = V l − Vc

where V l and Vc are the node sets of the local subgraph and
core subgraph. Ee and Xe are the corresponding edge set and
attribute matrix associated with Ve individually.

Here, l-hop neighbors of v refer to the nodes whose shortest
path length to v is l. And the most relevant nodes mean the most
important nodes which can significantly influence the predictive
outcome for a given classification model. Since these three types
of subgraphs are extracted from G, their vertex sets (V l, Vc and
Ve) and edge sets (E l, Ec and Ee) are the subsets of V and E in
G, individually.

In GNN-based representation learning, a node’s representa-
tion is obtained by structurally aggregating the representations
from its neighbors in the graph. Since it is not necessary to take
the full size of a node’s neighborhood [18], we extract a subset
of neighbors to form the local subgraph. For a given node, its
representation based on the full graph is almost the same to the
one on its local subgraph. Now we have defined the anomaly
detection problem on attributed networks and introduced three
types of subgraphs for counterfactual graph learning. In the next
section, we provide model-free evidence that both theoretically
and empirically explains our motivation for learning causal
relations in anomaly detection.

III. MODEL-FREE EVIDENCE

In this section, we investigate the process of data-generation
and the role of environment subgraphs, from a causal
perspective.

A. A Causal View of Data-Generation Process

According to the definitions in Section II, the node repre-
sentation is determined by its local subgraph. Similar to the
interpretation of image generation process [10], we consider the
causal generative process of local subgraphs is composed by
two autonomous functions, i.e., we can modify the environment
subgraph while keeping the core subgraph unchanged. This
demand coincides with the concept of structural causal models
(SCMs) and independent mechanisms [15]. An SCM is defined
as a collection of d (structural) assignments:

Gj := fj(PAj , Uj), j = 1, . . ., d (1)

where each variable Gj is a function of its parents PAj ⊆
{G1, . . ., Gd}\{Gj} and a noise variableUj . The noise variables
U1, . . ., Ud are jointly independent. In SCMs, intervention is
formalized as operations that modify a subset of assignments in
(1), e.g., changing Uj or changing the functional form of fj .

Fig. 1. Structural causal graph for anomaly detection task.

For anomaly detection task, Fig. 1 presents a causal graph
that illustrates a data-generation process. The local subgraph
Gl is caused by both the core subgraph Gc and environment
subgraph Ge, as shown by the two incoming arrows to Gl. The
node representation zc is extracted based on the core subgraph
Gc. The arrow from zc to Y indicates that the ground-truth Y
is conditioned on the representation zc. The representation zl

extracted from local subgraph should keep consistent semantics
with zc as long as the core subgraph is unchanged. Changing
the environment subgraph Ge can be seen as an intervention on
local subgraphs: for each observed sample f(Gl

i, G
e
i ), there is a

set of unobserved counterfactual samples f(Gl
i, G̃

e
j) where G̃e

j

is any unobserved environment subgraph.
Assume the distributions of observed and counterfactual

samples are denoted as P F(Gl
i, G

e
i ) and PCF(Gl

i, G̃
e
j), indi-

vidually. Then we have P F(Gl
i, G

e
i ) = P (Gl

i) · P (Ge
i |Gl

i) and
PCF(Gl

i, G̃
e
j) = P (Gl

i) · P (G̃e
j |Gl

i). RegardingGe′ as any inter-

vention (e.g., Ge
i or G̃e

j), the difference between the observed
and counterfactual samples lies precisely in the intervention
assignment mechanism, P (Ge′ |Gl

i) [21]. Here Ge′ and Gl
i are

not independent according to the causal graph. As a result,
the distribution of counterfactual samples, PCF, is generally
different from the distribution of observed samples P F.

B. Role of Environment Subgraphs

To investigate whether it is necessary to manufacture envi-
ronment subgraphs for enhancing anomaly detection models,
we here analyze the impact of the environment subgraphs on
anomaly node detection results. In particular, we analyze the
changes of predicted anomaly scores when removing environ-
ment subgraphs. We define the notion of impact degree for envi-
ronment subgraphs as the difference between predicted anomaly
scores with and without the use of the environment subgraphs.

In this controlled experiment, for each local subgraph we
select q% of the least important nodes as the environment
subgraph, and the rest (1− q)% nodes as the core subgraph.
The anomaly scores are computed by the GNN-based autoen-
coder method [22]. Fig. 2 reports the results on three bench-
mark datasets, where x-axis represents the ratio of removed
nodes (q%), and the y-axis represents the impact degree. Be-
fore computing the impact degree, we normalize the anomaly
scores in range from 0 to 1. We can observe that the impact
degree increases as the rise of the number of removed nodes.
If we remove fewer nodes (e.g., less than 40%), the predicted



XIAO et al.: COUNTERFACTUAL GRAPH LEARNING FOR ANOMALY DETECTION ON ATTRIBUTED NETWORKS 10543

Fig. 2. The impact of environment subgraphs.

anomaly scores are almost unaffected. One possible explanation
is that learning node representations with many neighboring
nodes is redundant [18]. However, removing a large number of
neighboring nodes dramatically influences the predicted scores.
For example, the median impact degree reaches ∼14% when
removing 92% of nodes for Yelp dataset. This result indicates
that unless a large number of nodes are selected as core nodes,
the environment subgraphs do have an effect on the predicted
anomaly scores. In addition, we analyze the anomaly detec-
tion accuracy when using different number of core nodes on
three datasets, and the results further prove our observation that
neighboring nodes place an impact on detection performance,
which coincides well with the works [18], [23]. This motivates
us to exert interventions on environment subgraphs to boost the
anomaly detection performance.

IV. METHOD

In this section, we introduce the details of the proposed
framework, CFAD. Specifically, we first present how to extract
the core subgraph of a given node, and then illustrate how to
train a generator for synthetic representations. Next, we combine
synthetic environment representations with core representations
to manufacture counterfactual subgraphs, and finally propose the
counterfactual subgraph-based anomaly detection model.

A. Extracting Core Subgraphs

We now illustrate how to extract the core subgraph of a
given node based on causal explanations for GNNs. Causal
explanations aim to find which fraction of the input graph is
most influential to the model’s decision [24]. Based on this
idea, we introduce causal explanation techniques to identify the
nodes’ causal contributions in a graph, and distill the top-K most
relevant nodes as the core nodes constituting the core subgraph.
Existing causal explanation methods mainly focus on annotated
samples [17], [20]. Since obtaining the annotated samples for
anomaly detection is cost prohibitive, we design a Granger
causality-based causal explanation method to determine the core
subgraph without relying on annotation information.

Specifically, inspired by the work [17], we introduce the
notion of Granger causality [19] to extract core subgraphs. For a
given node vt and its local subgraphGl, we use δGl to denote the
model error of the GNN when considering the local subgraph
Gl, while δGl\{vj} represents the model error excluding the
information from node vj ∈ Gl. Following the idea of Granger
causality, we can quantify the causal contribution of node vj to

the output of the GNN. The causal contribution of node vj is
defined as the decrease in the model error, formulated as

Δδ,vj
= δGl\{vj} − δGl . (2)

When coping with unlabeled nodes, we use the reconstruc-
tion loss of the deep graph convolutional autoencoder [22] to
calculate δGl and δGl\{vj}. The reconstruction loss in the au-
toencoder can be adopted to accurately evaluate the abnormality
of nodes [25], [26]. Hence it can be regarded as the model
error for anomaly detection tasks. For this purpose, based on
the autoencoder architecture, we first compute the reconstructed
adjacency matrix and the attributes corresponding to the local
subgraph Gl and the one excluding node vj , Gl\{vj}. For
simplicity, the functions for reconstructing the adjacency ma-
trices and attributes in the autoencoder are denoted as fA(·) and
fX(·), respectively. The associated outputs can be formulated as
follows:

ÃGl = fA(Gl), X̃Gl = fX(Gl), (3)

ÃGl\{vj} = fA
(
Gl\{vj}

)
, X̃Gl\{vj} = fX

(
Gl\{vj}

)
.

(4)

Then we compare the reconstructed adjacency matrices and
attributes, i.e., ÃGl , X̃Gl , ÃGl\{vj} and X̃Gl\{vj}, with the
original ones, AGl and XGl . As a result, the model error is
measured by the reconstruction loss of the autoencoder (denoted
as L):

δGl = L
(
AGl ,XGl , ÃGl , X̃Gl

)
, (5)

δGl\{vj} = L
(
AGl ,XGl , ÃGl\{vj}, X̃Gl\{vj}

)
. (6)

Now, the causal contribution of node vj is measured by the loss
difference Δδ,vj

associated with the original local subgraph and
the one removing node vj .

Given causal contributions of nodes in a local graph, we can
sort the nodes accordingly and distill the top-K most relevant
nodes and corresponding edges as the core subgraph. Here, the
parameter K can be tuned by performing a grid search on the
values near the average vertex degree.

B. Training Representation Generator

In this subsection, we present the representation generator
which takes random noises as input and outputs synthetic rep-
resentations for producing counterfactual subgraphs. For this
purpose, we first train an Autoencoder (AE) to embed a lo-
cal subgraph into a group of node representations. Based on
obtained node representations, we introduce a generative adver-
sarial network (GAN) to produce synthetic representations, each
of which is corresponding to a node in the local graph. Fig. 3
illustrates the two-step training process for the representation
generator.

1) Autoencoder Training: The first step is to train an AE with
the encoder Enc(·) and decoder Dec(·). The encoder takes
the local subgraph Gl as input and embeds it into a group of
latent representations, i.e., Z = Enc(Gl) ∼ q(Z|Gl), while the
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Fig. 3. Two-steps training process for the synthetic representation generator.

decoder learns to reconstruct the local subgraph from the latent
representations, i.e., G̃l = Dec(Z) ∼ p(Gl|Z).

As for the encoder, it is built with multiple GNN layers that
aggregate each node to a low-dimensional latent representa-
tion. Following the neighborhood message-passing mechanism,
GNN layers compute the node representations by aggregating
node features X from local neighborhoods in an iterative man-
ner. Hence, the encoder Eec(·) with L layers can be expressed
as:

H1 = GNN1(A,X), . . . , Z = GNNL(A,HL−1), (7)

where GNNL is the last layer and Z is the desired node rep-
resentations learned from the encoder. Note that in CFAD the
model encoder is compatible with any arbitrary GNN-based
architectures [27], [28], [29]. For efficiency, we select simple
graph convolution (SGC) [30] in our implementation.

After obtaining the latent representation Z, the decoder aims
to reconstruct the attributed network. Specifically, the decoder
takes Z as input and then calculates the inner product to obtain
the rebuilt adjacency matrix Ã:

Ã = sigmoid(Z · ZT ). (8)

To approximate the original node attributes from the encoded
representation, we leverage a simple fully-connected layer to
reconstruct the attribute information as follows:

X̃ = fReLU(Z ·W + b), (9)

where W is the weight matrix, and b is the corresponding bias
term. Then, considering the reconstruction errors, the objective
function of the AE can be formulated as:

LAE = (1− α)
∥∥∥A− Ã

∥∥∥2
F
+ α

∥∥∥X− X̃
∥∥∥2
F
, (10)

where ‖ · ‖2F refers to the Frobenius norm and α is an important
controlling parameter which balances the trade-off between
structure reconstruction and attribute reconstruction.

2) Generator Training: In the second step, we propose to
learn a representation generator g with the help of the pre-trained
AE in an adversarial manner. The generator g takes a noise vector
sampled from a prior distribution p(z̃) as input. Given the en-
coderEnc(·) from AE, we train the generator g to produce node
representations. The distribution of generated representations
resembles the distribution of latent embeddings from Enc(·) as

similar as possible, such that the discriminatorD in GAN cannot
reliably distinguish them. Based on the concept of Least Squares
GAN [31], the mini-max game is formalized as follows:

min
g

max
D

Ez∼p(z) [log (D (z))]

+ Ez̃∼p(z̃) [log (1−D (g (z̃)))] , (11)

where p(z̃) is the prior distribution. Previous research [32] and
our preliminary experiments both show that Gaussian prior is a
robust option across different datasets. The parameters inEnc(·)
are kept frozen when training the generator.

Once the training process of generator g is converged, we use
g to produce a set of synthetic representations from a random
noise. Each synthetic representation is corresponding to a node
in the local subgraph. Meanwhile, the synthetic representation
distribution should be similar to the one of the real node. Next
we illustrate how to use synthetic representations to construct
counterfactual subgraphs.

C. Generating Counterfactual Subgraphs

To obtain qualified counterfactual subgraphs, we first extract
high-quality synthetic representations, and then produce coun-
terfactual subgraphs based on extracted representations.

1) Synthetic Representation Extraction: Since some of the
generated synthetic representations tend to be noisy and dis-
torted due to the unstable nature of GANs, we first remove
synthetic representations with low quality before producing
counterfactual subgraphs. Specifically, the quality score is cal-
culated by the similarity degree between synthetic and real
representations. For a given node, we compute the quality score
of a group of synthetic representations by combining two values:
one is the similarity degree between the synthetic representations
and the real node representations of its local subgraph; and
another is the the similarity degrees across all nodes. The higher
the similar degree, the higher the quality score.

Formally, for a given node vj , we denote its local subgraph’s
representation as Zl

j = [zc1, . . ., z
c
m, ze1, . . ., z

e
n], which can be

split into two groups: one for the core nodes Zc
j = [zc1, . . ., z

c
m]

and another for the environment nodes Ze
j = [ze1, . . ., z

e
n]. For

synthetic representation Z̃l
s = [z̃c1, . . ., z̃

c
m, z̃e1, . . ., z̃

e
n], the sim-

ilarity degree with its local subgraph is calculated by the Eu-
clidean distance between Z̃l

s and Zl
j :

dEuc(Z̃
l
s,Z

l
j) =

1

m

m∑
t=1

‖z̃ct − zct‖2 +
1

n

n∑
t=1

‖z̃et − zet‖2 .
(12)

The similarity degree with all nodes is computed as:

dEuc

(
Z̃l

s,Z
l
1, . . .,Z

l
a

)
=

1

a

a∑
t=1

dEuc

(
Z̃l

s,Z
l
t

)
, (13)

where a is the number of nodes. Correspondingly, the quality
score of synthetic representation Z̃l

s for node vj is defined as:

Q
(
Z̃l

s|vj
)
= β · dEuc

(
Z̃l

s,Z
l
j

)
(14)

+ (1− β) · dEuc

(
Z̃l

s,Z
l
1, . . .,Z

l
a

)
, (15)
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Fig. 4. The process of generating counterfactual subgraphs. During this pro-
cess, the representations of core nodes in the synthetic representation matrix
(orange block) are replaced with the real representations in the encoded repre-
sentation matrix (green block). Then the mixed representation matrix is decoded
into the counterfactual subgraph.

where β is a parameter to adjust the weights of two terms.
Based on the quality score, we extract the top P generated

representations:

fselect =

{
1, Q(Z̃l

s|vj) > ε,

0, otherwise,
(16)

where fselect denotes the select condition, and ε is a threshold
determined by the quality score ranking result based on the
number P of desired representations.

2) Counterfactual Subgraphs: Here we show how to adopt
the synthetic representations to generate counterfactual sub-
graphs. The main idea is to replace the synthetic representations
associated with the core nodes with the real representations
and then utilize the mixed representations to construct the
counterfactual subgraph. The generation process is illustrated in
Fig. 4.

In particular, for node vt, the node set of its local sub-
graph is denoted as V l = {vc1, . . ., vcm, ve1, . . ., v

e
n}, where Vc =

{vc1, . . ., vcm, } and Ve = {ve1, . . ., ven} are the node sets of
its core subgraph and its environment subgraph, respec-
tively. During the generation process: (1) the encoder first
transforms the nodes in V l into node representations Zl =
[zc1, . . ., z

c
m, ze1, . . ., z

e
n]; (2) then the generator takes a random

noise as input and generates another group of node represen-
tations Z̃l = [z̃c1, . . ., z̃

c
m, z̃e1, . . ., z̃

e
n], each of which is corre-

sponding to a node in V l; (3) among generated representa-
tions Z̃l, the representations Z̃c associated with the core nodes
are replaced by Zc to form the mixed representations Zmix =
[zc1, . . ., z

c
m, z̃e1, . . ., z̃

e
n]; (4) finally, the mixed representations

Zmix is fed into the decoder to produce the counterfactual sub-
graph. Following these four steps, each node can obtain multiple
counterfactual graphs, which will be adopted to train a robust
model for anomaly detection.

D. Anomaly Detection Model

This section presents the counterfactual subgraph-based
anomaly detection model CFAD, which distinguishes normal
and abnormal nodes according to the computed anomaly scores
using a few labeled anomalies. Fig. 5 shows CFAD’s architec-
ture. In this model, (1) the encoder first learns node represen-
tations of real subgraphs and counterfactual subgraphs, which
are passed to the abnormality valuator fθs(·) for estimating the

Fig. 5. The model architecture for the anomaly detection with counterfactual
subgraphs.

anomaly score si; (2) then the Gaussian prior-based reference
score Rs is computed to guide the learning process of anomaly
scores; (3) lastly, si and Rs are inputs to the loss functions, in-
cluding our designed counterfactual subgraph-based contrastive
loss and consistency regularization term, to guide the optimiza-
tion.

Concretely, for the abnormality valuator fθs(·), it is built with
the feed-forward layers that transform the intermediate node
representations to a scalar anomaly score:

si = fθs(vi) = uT
s · ReLU(Ws · zi + b1

s) + b2s, (17)

where si is the anomaly score of node vi and zi is the represen-
tation of node vi. Ws and us are the learnable weight matrix
and weight vector, respectively. b1

s and b2s are the corresponding
bias terms.

For the reference score, we define it as the mean value of
the anomaly scores of a set of randomly selected normal nodes,
which serves as the reference to quantify how much the scores of
anomalies deviate from those of normal nodes. Since Gaussian
distribution is commonly a robust choice to fit the abnormality
scores for a wide range of datasets [5]. We first sample a set
of k anomaly scores from the Gaussian prior distribution, i.e.,
{r1, r2, . . ., rk} ∼ N (μ, σ2), each of which denotes the abnor-
mality of a random normal node. The reference score is then
computed as the mean value of all the sampled scores:

Rs =
1

k

k∑
i=1

ri. (18)

With the reference score in hand, the deviation between the
anomaly score of node vi and the reference score can be defined
in the form of the standard score: dev(vi) = (si −Rs)/δr,
where δr is the standard deviation of the set of sampled anomaly
scores {r1, r2, . . ., rk}.

Then, we introduce contrasting loss [33] as the objective
function by replacing the distance function with the deviation.
For labeled node vli and its corresponding counterfactual node
ṽli, their losses are defined as:

Llr = (1− yi) ·
∣∣dev

(
vli
)∣∣+ yi ·max

(
0,m− dev

(
vli
))

,
(19)

Lcf = (1− yi) ·
∣∣dev

(
ṽli
)∣∣+ yi ·max

(
0,m− dev

(
ṽli
))

,
(20)

where yi is the ground-truth of input node vli. If node vli is
an abnormal node then yi = 1; otherwise yi = 0. Here the
confidence margin m is defined as a radius around the deviation.
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For unlabeled node vui and its corresponding counterfactual
node ṽui , since they should have the same anomaly score, we
introduce a consistency regularization term [34] as the objective
function:

Lcr = ‖dev (vui )− dev(ṽui )‖2 . (21)

This loss function penalizes the inconsistent anomaly scores
of real unlabeled node vui and its corresponding counterfactual
node ṽui to enhance robustness of the model. As a result, the
model is optimized by a combination of these three losses:

Lfinal = Llr + λ1 · Lcf + λ2 · Lcr, (22)

where λ1 and λ2 are two hype-parameters to adjust loss weights.
In this loss, the contrasting loss Lcf and the consistency regu-
larization term Lcr are based on the counterfactual subgraphs.
Therefore, it can learn robust causal representations for nodes in
graph during model training. The attained representations reveal
the causal correlations between the target node and its subgraph
and allow us to better differentiate abnormal nodes from others
in the latent space. Consequently, the proposed model improves
the anomaly detection performance which we will detail in the
next section.

E. Training Process of the Proposed Model

Here we summarize the overall training procedures of the
synthetic representation generator and anomaly detection model.

The training procedure of the generator is summarized in
Algorithm 1. The autoencoder is first trained based on the
attributed network G using the loss in (10) (Line 1-5), and the
encoder is saved as Enc for training generator g (Line 6). Next,
to train generator g, the local subgraph of each node in G is
extracted and stacked into the subgraph set G (Line 8-11). Fi-
nally, the generatorg and discriminatorD are alternately updated
using representation matrices produced by the encoder (Line
12-18). The trained generator g will be used to produce synthetic
representations for producing counterfactual subgraphs.

The training procedure of the anomaly detection model is
summarized in Algorithm 2. In an epoch of the training phase,
we split the node set into several mini-batches. Then in each
iteration, for labeled node vli, its representation zi is first com-
puted based on its local subgraph Gl

i by (7) (Line 5). After
that, the local subgraph-based contrasting loss Llr in (19) is
calculated based on its representation zi (Line 6). Similarly, its
counterfactual representation z̃i is computed based on its coun-
terfactual subgraph G̃l

i by (7), and the counterfactual subgraph-
based contrasting loss Lcf in (19) is calculated based on z̃i
(Line 7-8). Next, for unlabeled node vuj , its representation zj
and counterfactual representation z̃j are computed based on its
local subgraphGl

j and counterfactual subgraph G̃l
j , individually

(Line 9). Based on these two representations, the consistent
regularization lossLcr in (21) is calculated (Line 10). Finally, the
combination of these three losses, Llr, Lcf and Lcr, forms the
final loss Lfinal, and the parameters of the model are optimized
by a back-propagation with a gradient descent algorithm. After
the training phase, anomaly scores of nodes are computed using
(17).

Algorithm 1: Training Process of the Synthetic Represen-
tation Generator.

Input: Attributed network G = (V, E ,X); Number of
training epochs: T1 and T2.

Output: The synthetic representation generator g.
1: Initialize parameters of the encoder and decoder;
2: while t < T1 do
3: Sample a batch of nodes in V;
4: Update parameters for training the encoder and

decoder using the loss in (10);
5: end while
6: Save the encoder as Enc;
7: Initialize parameters of generator g and discriminator D;
8: for each node vi in V do
9: Extract the local subgraph Gl

i of vi;
10: Put Gl

i into the subgraph set G;
11: end for
12: while t < T2 do
13: Sample a batch of noises from noise prior p(z̃);
14: Sample a batch of subgraphs in G, and encode each

subgraph into a representation matrix by Enc;
15: Update the parameters of discriminator D;
16: Sample a batch of noises from noise prior p(z̃);
17: Update the parameters of generator g.
18: end while

Algorithm 2: Anomaly Detection Model Training
Input: Five parts: (1) labeled nodes with their local
subgraphs and labels: {(vli, Gl

i, yi)}Ii=1; (2) labeled nodes
with their counterfactual subgraphs and labels:
{(vli, G̃l

i, yi)}Ii=1; (3) unlabeled nodes with their local
subgraphs: {(vuj , Gl

j)}Jj=1; (4) unlabeled nodes with their

counterfactual subgraphs: {(vuj , G̃l
j)}Jj=1; and (5) number

of training epochs T and hyper-parameters m, λ1 and λ2.
Output: Anomaly scores s of unlabeled nodes.
1: Initialize parameters of the model;
2: while t < T do
3: Randomly split nodes into batches;
4: for each mini-batch do
5: Compute representation zi of labeled node vli using

its local subgraph Gl
i by (7);

6: Calculate Llr in (19) via zi;
7: Compute counterfactual representation z̃i of labeled

node vli using its counterfactual subgraph G̃l
i by (7);

8: Calculate Lcf in (20) via z̃i;
9: Compute representation zj and counterfactual

representation z̃j of unlabeled node vuj using its

local subgraph Gl
j and counterfactual subgraph G̃l

j ,
individually, by (7);

10: Calculate Lcr in (21) via zj and z̃j ;
11: Lfinal ←Llr + λ1 · Lcf + λ2 · Lcr;
12: Take gradient steps and update the parameters;
13: end for
14: end while
15: Compute anomaly scores of nodes using (17).
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F. Theoretical Analysis

Generative interventions can be helpful to eliminate spurious
correlations, resulting in better generalization across different
detection environments. It is theoretically impractical to gener-
ate perfect interventions and eliminate all the spurious correla-
tions. However, we can estimate the lower and upper bounds for
the causal effects.

We formalize the proposed framework with structural causal
models (SCMs) [15]. Assume that P (s|do(Gl)) denotes the
causality from local subgraph Gl to anomaly score s, which is
the treatment effect of an input subgraph Gl on anomaly score
s. We present the bound theorem as follows.

Theorem 1. Given the observed joint distribution, the lower
and upper bound of P (s|do(Gl)) is P (Gl, s) ≤ P (s|do(Gl)) ≤
P (Gl, s) + 1− P (Gl).

Proof. Presume that all the unobserved interventions as ui.

P (s|do(Gl)) =
∑
ui

P (s|Gl, ui) · P (ui) (23)

=
∑
ui

P (s|Gl, ui) · (P (ui,Gl)− P (Gl, ui) + P (ui)
)

(24)

=
∑
ui

P (s,Gl, ui) +
∑
ui

P (s|Gl, ui) · (P (ui)− P (ui,Gl)).

(25)

Because of P (s|Gl, ui) ∈ [0, 1], P (s|do(Gl)) should be bigger
than

∑
ui P (s,Gl, ui), i.e.,

P (s|do(Gl)) ≥ P (Gl, s). (26)

On the other hand, P (s|do(Gl)) should be smaller than∑
ui P (s|Gl, ui) · (P (ui)− P (ui,Gl)), i.e.,

P (s|do(Gl)) ≤ P (Gl, s) + 1− P (Gl). (27)

Hence P (s|do(Gl)) has a bound between P (Gl, s) and
P (Gl, s) + 1− P (Gl). �

We try to exert interventions on environment subgraphs and
generate new local (counterfactual) subgraphs to explore the
causality of Gl on anomaly score s, i.e., P (s|do(Gl)). Here,
P (s|do(Gl)) is different from P (s|Gl). For P (s|Gl) it refers to
the observational distribution and a change in Gl can indicate a
change in unobserved confounding bias under the causal graph.
Correspondingly, the observed change in Gl should vary in
confounding variables. Hence, the observed P (s|Gl) should be
differentiated from P (s|do(Gl)). To identify the causal effect
of P (s|do(Gl)), we make the assumption that iv denotes the
intervention variable. It measures the difference between real
environment subgraph and synthetic environment subgraph. We
notice the following theorem.

Theorem 2. The causal effect from local subgraph Gl to
anomaly score s can be identified by observing variable iv.

Proof. Presume that PAj denotes the parent node of variable
Gl. Then:

P (s|do(Gl)) =
∑
PAj

P (s|Gl,PAj) · P (PAj)

=
∑

PAj ,iv

P (s|Gl,PAj , iv) · P (iv|Gl,PAj) · P (PAj)

TABLE II
DATASET STATISTICS. HERE r1 (RESP. r2) DENOTES THE RATIOS OF LABELED

ANOMALIES TO ALL ANOMALIES (RESP. NUMBER OF NODES)

=
∑
PAj

P (s|Gl, iv) · P (iv|PAj) · P (PAj)

=
∑
iv

P (s|Gl, iv) · P (iv). (28)

Hence, we can identify the causal effect of Gl on s by
observing iv. �

V. EXPERIMENTAL EVALUATION

In this section, we perform empirical evaluations to demon-
strate the effectiveness of our model in terms of anomaly detec-
tion performance, data efficiency, ablation study and sensitive
analysis.

A. Experimental Settings

We employ three real-world attributed networks – Yelp,
PubMed, and Reddit [27] for performance comparison, which
are publicly available and have been widely used in previous
research [27], [35]. For the Yelp dataset, the labels of the
nodes are collected from Yelp.com. While, for the PubMed and
Reddit datasets, we do not have labels for abnormal nodes. Thus
we follow previous works [22], [33] to adopt the perturbation
scheme to inject several anomalies (e.g., structural and contex-
tual anomalies). The statistics of our three datasets are shown
in Table II. For performance evaluation, we use three standard
metrics: AUC-ROC, AUC-PR, and Precision@K.

We compare the proposed framework CFAD with nine un-
supervised and semi-supervised anomaly detection methods:
LOT [36] is a feature-based approach which detects outliers
at the contextual level; Autoencoder [37] is a feature-based
unsupervised deep model which introduces an anomaly regu-
larizing penalty based upon L1 or L2 norms; SCAN [38] is an
efficient algorithm for detecting network anomalies based on a
structural similarity measure; ConOut [39] identifies network
anomalies according to the corresponding subgraph and the
relevant subset of attributes in the local context; Radar [40]
is an unsupervised method that detects anomalies on attributed
network by characterizing the residuals of attribute information
and its coherence with network structure; DOMINANT [22]
is a GCN-based autoencoder which computes anomaly scores
using the reconstruction errors from both network structure
and node attributes; SemiGNN [41] is a semi-supervised GNN
model which leverages the hierarchical attention mechanism
to correlate neighbors and views at different levels; Deep-
SAD [42] is a state-of-the-art semi-supervised anomaly detection
model, where the node attributes are leveraged as input features;
GDN [33] is a novel GNN-based model which is capable of
leveraging limited labeled anomalies to enforce statistically
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TABLE III
PERFORMANCE COMPARISON BETWEEN CFAD AND BASELINES ON THREE DATASETS

significant deviations between abnormal and normal nodes on
attributed networks.

For core subgraph extraction, we adopt the anomaly detection
model introduced in [22] for both efficiency and simplicity. For
the encoder architecture, we use the SGC model [30] to build
the network encoder with two layers. The abnormality valuator
in (17) employs two fully-connected layers with unit numbers
of 512 and 1, respectively. The confidence margin m (in (19)
and (20)) is set to 5. The reference score Rs is computed by
(18) with k = 5, 000 scores sampled from a standard Gaussian
prior distribution. Unless otherwise specified, for each dataset,
we randomly access 10 labeled abnormal nodes for each run of
the experiment. We train our model at most 1,000 epochs with a
batch size of 16. The dataset is split into 40-20-40% for training,
validating and testing, respectively. The baseline methods adopt
the same dataset, and the hyper-parameters are tuned based on
the validation set, and the results are reported based on the test
set. The experiments are performed by a Windows desktop with
an Intel Xeon E5-1603 CPU and NVIDIA GeForce RTX 3090
GPU.

B. Anomaly Detection Results

We now report the anomaly detection performance between
our proposed model and baselines in terms of AUC-ROC,
AUC-PR, and Precision@K in Table III. We have the following
observations: (1) For all three datasets, our proposed CFAD
model has the best anomaly detection performance. Specifically,
in terms of AUC-ROC, our model acquires improvements of
6.8%, 3.4%, and 3.8% on Yelp, PubMed, and Reddit datasets,
respectively, compare to the best baseline. Meanwhile, the
results of Precision@50, Precision@100, and Precision@200
also suggest that CFAD can better rank abnormal nodes on
higher positions than baselines. For example, CFAD obtains
an remarkable 32.5% improvement on Yelp in terms of Per-
cision@50 compared to the best baseline GDN, demonstrating
the advantages of CFAD and its potentials in real-world applica-
tions for detecting anomalies. This is primarily attributed to the
generated counterfactual graphs that simulate the manipulations
to the environment change and enhance model robustness and
detection performance; (2) Notably, as an unsupervised baseline,

DOMINANT [22] outperforms two supervised methods (Deep-
SAD and SemiGNN). One potential explanation is that Deep-
SAD fails to capture the adequate graph network characteristics,
and SemiGNN relies on a relatively large number of labeled
data to obtain the expected performance; (3) GDN, a specially
designed method for few-shot anomaly detection, outperforms
unsupervised method DOMINANT. This result demonstrates
that leveraging supervised knowledge of labeled anomalies is
an effective way for anomaly detection. Meanwhile, by learning
causal relations, our proposed model CFAD is capable of obtain-
ing accurate node representations under different environments
and thus surpass GDN by a large margin. We also investigate
the runtime of the models, and the experimental results sug-
gest that CFAD is competitive compared to the deep learning-
based baseline methods in terms of the runtime on these three
datasets.

C. Ablation Study

We now explore the effectiveness of three important com-
ponents in CFAD. We design three variants: (1) CFAD-lr,
which removes the counterfactual graphs from the input data;
(2) CFAD-cf, which removes the consistency regularization loss;
and (3) CFAD-cr, which removes the contrasting loss based on
the counterfactual graphs. We also ablate the encoder network
of CFAD by replacing SGC with graph convolutional network
(GCN) [30].

Fig. 6 reports the performance of CFAD and its three variants
with different network architectures (i.e., SGC and GCN). We
have the following three observations. First, by incorporating the
counterfactual graphs, CFAD-cf largely outperforms CFAD-lr
in anomaly detection on three datasets. For instance, CFAD-cf
achieves 1.8% performance improvement over CFAD-lr on Red-
dit dataset in terms of AUC-ROC. When considering the coun-
terfactual graph-based consistency regularization loss, CFAD-cr
achieves significant improvements over CFAD-lr, which demon-
strates that the generated counterfactual graphs can effectively
benefit model training and representation learning for nodes in
graphs. Second, the full model combining the three components
consistently performs better than the model removing one of the
components on all three datasets. For example, the performances
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Fig. 6. Ablation study: Variants of CFAD.

of CFAD are 3.2%, 2.0%, and 2.2% higher than CFAD-lr, CFAD-
cf, and CFAD-cr, respectively, on Yelp dataset. This verifies
the effectiveness of our designed components based on coun-
terfactual graphs. Finally, our proposed CFAD still obtained the
best results when using the GCN architecture, which indicates
that our method is model-agnostic and can be applied to other
powerful GNN-architectures.

D. Data Efficiency

We now examine the labeled data efficiency of our model and
baselines, since collecting a large number of labeled anomalies is
very difficult in real-world anomaly detection applications. We
vary the number of available labeled anomalies from 2 to 10, and
show the results in Fig. 7, which covers the performance of our
model and three semi-supervised baselines (SemiGNN, Deep-
SAD, and GDN), in terms of AUC-ROC and Precision@100.
Similar results can also be observed in AUC-PR. We omit the
comparison for unsupervised baselines since their performances
are insensitive to labeled data.

We can see that the performances of all methods increased
when more labeled data were available. The performance im-
provements of DeepSAD and SemiGNN are steadily increased
with more labeled data. Compared to semi-supervised ap-
proaches, DeepSAD and SemiGNN, the two few-shot learning-
based methods (GDN and CFAD) have better detection perfor-
mance, which indicates the effectiveness of few-shot learning
models on anomaly detection. While among them, CFAD is
the most data-efficient method, which achieves the best average
performance w.r.t. the different numbers of labeled anomalies
and the fastest increasing rate. Impressively, the performance of
CFAD with only six labeled anomalies exceeded the result of
GDN with ten labeled anomalies. The superiority of CFAD is
that it can generate a lot of counterfactual samples to benefit the
model learning process.

E. Sensitivity Analysis

In this section, we analyze the sensitivity of the two critical
hyper-parameters in CFAD. First, for a target node, K most

Fig. 7. Data efficiency on number of labeled anomalies.

Fig. 8. Influence of core node number K.

relevant nodes are selected to form the core subgraph. We
vary the number of K from 2 to 16, and present the analysis
result in Fig. 8. We can see that CFAD initially achieves better
performance with more nodes in the core subgraph, then the
improvement approaches saturation (e.g., K ∼4-8 for PubMed
dataset) and starts to decrease. We speculate that too few nodes
cannot cover all the real core nodes of the target node, and many
of the real core nodes are incorrectly classified into the envi-
ronment subgraph. Consequently, the counterfactual subgraph
cannot generate a similar or identical representation for the target
node with the real core subgraph. Since synthetic nodes replace
several real core nodes in the counterfactual subgraph, they
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Fig. 9. Influence of counterfactual subgraph number P .

eventually harm the model training process as well as detection
performance. On the other hand, a larger K (i.e., too many core
nodes) cannot help generate effective counterfactual subgraphs
nor improve the detection performance. Within more nodes in
the core subgraph, CFAD degenerates to the model without
the counterfactual subgraph. In addition, the number of nodes
K required to reach the performance peak is different across
datasets. For example, it only needs 6 nodes for PubMed dataset
but 10 nodes for Reddit dataset to have the best performance.
This difference is due to the various number of nodes/edges in
the graphs.

Next, we observe the influence of the number of selected syn-
thetic subgraphs P (cf. (16)). The number of P determines how
many counterfactual subgraphs are generated for model training,
which is vital for obtaining a robust model. The AUC-ROC and
Precision@100 with different P values are illustrated in Fig. 9.
We can see that the model achieves better performance when P
changes ranging from 70 to 150 for Yelp and PubMed datasets
and from 100 to 200 for Reddit dataset. Too many synthetic
subgraphs will decrease the anomaly detection performance.
The reason behind that is when we select too many synthetic
subgraphs, they often contain noised and distorted data that harm
the model training and degrade the detection performance. Since
there is a relatively large range of P values for obtaining the
expected performance, it would not be hard for searching the
proper values of P .

F. Counterfactual Subgraphs Visualization

Here, we conduct visual analysis on real subgraphs and pro-
vide the counterfactual subgraphs. We take a node from PubMed
dataset as an example to conduct inspection. We depict the
network structures of the real local subgraph and two generated
counterfactual subgraphs in Fig. 10. The dotted line denotes that
this edge exists in the real subgraph but not in the counterfactual
subgraph, and the purple bold line refers to the new added
edges. The central black circle represents the target node, the
blue circles refer to core nodes, and the small white circles
denote environment nodes. From these figures, we can see that
the core subgraphs, which consist of the target node (black
circle) and core nodes (blue circles), keep unchanged for both the
real and counterfactual subgraphs. Instead, both counterfactual
subgraphs consisting of the environment nodes (white circles),

Fig. 10. Structures of the real and counterfactual subgraphs. The dotted lines
denote the removed edges and the purple bold lines refer to the newly added
edges. (a) Real subgraph. (b) Counterfactual subgraph 1. (c) Counterfactual
subgraph 2.

shown in Fig. 10(b) and (c), are obviously different from the
real one. At the same time, the two counterfactual environment
subgraphs are also different, i.e., they contains different links
(edges), since the environment subgraphs are generated based
on different random noises.

The attribute values of the nodes in Fig. 10 are presented
in Table IV, where we only show a small number of attributes
and nodes since others exhibit similar trends. This table shows
that for the core nodes, although some of the attribute values
in the counterfactual subgraphs (CS-1 and CS-2) are different
from the ones in the real subgraphs (Real), their differences
are quite small. For example, for core node 1, the average
difference of the attribute values of the real and counterfactual
subgraphs is only 0.0025. On the contrary, for the environment
nodes, the average difference of attribute values of the real and
counterfactual subgraphs is relatively large. For example, the
difference of the environment node 1, 0.0117, is approximately
four times bigger than the core node 1.

The above results suggest that the structures and attributes of
the counterfactual subgraphs are quite similar to the real sub-
graph. For nodes in environment subgraphs, both structures and
attributes of the counterfactual subgraphs become different from
the real ones. Hence, the generated counterfactual subgraphs are
differentiated from real subgraphs, but their core subgraphs pos-
sess similar structures and attributes with the real core subgraph,
i.e., they can preserve the most information of the real subgraph.
Therefore, the counterfactual subgraphs can be adopted to learn
causal representations by dealing with environment changes and
further enhance the model performance.

VI. RELATED WORK

In this section, we review the literature in terms of network
anomaly detection and causal representation learning.

A. Network Anomaly Detection

With the vast developments of communication technologies,
the Internet of Things, user devices, and many other network-
based services, the security capability is becoming an indispens-
able part of a reliable and robust network system against cyber
adversaries.

Anomaly detection, especially on attributed networks, has
drawn increasing research attention in the community partly
due to the challenges of (1) how to handling network topologies
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TABLE IV
NODE ATTRIBUTES IN REAL AND COUNTERFACTUAL SUBGRAPHS (CS: COUNTERFACTUAL SUBGRAPHS)

and node features in non-Euclidean space and (2) how to detect
anomaly nodes when considering complex node interactions
with rich node features. Many recent researches adopt the
graph neural network (GNN) architectures to solve the network
anomaly detection problem due to its strong representation
learning power [6], [43] for aggregating neighboring nodes in
graphs. Supervised methods are prevailing in node classification
and link prediction tasks. However, since it is challenging to
collect massive labeled data for network anomaly detection (e.g.,
for a newly launched system or when the network encounters
new types of attacks), semi-supervised and unsupervised models
are widely used for label-limited anomaly detection in networks.
These models focus on designing new mechanisms that connect
node features with local structures for measuring the node
abnormality.

Among them, one group of detection models adopts a meso-
scopic view and studies the node feature and structure similar-
ities in local community or ego-network. Another group learns
anomaly nodes in the feature subspace, e.g., user preference
is incorporated into the processes of clusters extraction and
outliers detection [44]. Besides, many detection models are
proposed to address specific issues associated with network
anomaly detection such as data sparsity, scalability, relational
dependencies, interpretability, and training complexity [23].

Specifically, DOMINANT [22] builds a deep autoencoder
architecture on top of GCN, achieving superior performance
compared to other shallow models. GAS [45] is another GCN-
based large-scale anti-spam method for detecting spam adver-
tisements. ComGA [46] presents a community-aware attributed
graph anomaly detection model that incorporates a tailored
deep GCN. ResGCN [47] is a residual-based GCN aiming to
address the problems of sparsity and nonlinearity capturing,
residual modeling, and network smoothing for efficient network
anomaly detection. Contrastive learning and self-supervised
learning are also introduced to detect the anomalies in attributed
networks [25], [48].

Other studies focus on designing semi-supervised detection
model that assumes a few labeled samples are available for
model training. For instance, DevNet [5] fulfills an end-to-end
framework of computing anomaly scores with a neural deviation
learning, in which a few labeled anomalies are adopted to
enforce statistically significant deviations of the anomaly scores
of anomalies from that of normal data objects in the upper tail.
SemiGNN [41] is a semi-supervised GNN that adopts hierarchi-
cal attention to model the multi-view graph for fraud detection.

A cross-domain anomaly detection model COMMANDER is
proposed to improve the detection performance for unlabeled
target graph by leveraging another labeled source graph. A
multi-hypersphere graph learning approach MHGL is designed
to effectively leverage existing labels by learning fine-grained
normal patterns to distinguish both seen and unseen anomalies.
Meta-learning, few-shot learning, and one-class classification
algorithms are also used to address the problem of labeled data
shortage and are incorporated into network anomaly detection
models for improving the label-efficiency, given the fact that
anomaly samples are hard to obtain in practical situations. For
example, Meta-PN [49] is a GNN-based meta-learning algo-
rithm that uses a decoupled network architecture to infer high-
quality pseudo labels on unlabeled nodes via meta-label propa-
gation strategy. Few-shot learning on network anomaly detection
is studied in [33], where the authors propose to incorporate prior
knowledge to learn anomaly-informed models, reducing the cost
of collecting valuable labeled anomalies. Specifically, a graph
deviation network (GDN) first assigns anomaly scores to nodes
in the graph using GNNs. Then it defines the anomaly mean
based on prior probability to guide the subsequent anomaly score
learning. Readers can refer [23] for a comprehensive review
on deep learning-based graph anomaly detection, including the
above mentioned models.

B. Causal Representation Learning

Causal representation learning aims to learn a representation
exposing the causal relations that are invariant under differ-
ent interventions [14]. Generating counterfactual samples is an
effective way to remove spurious correlations and help learn
causal representations, and has attracted considerable atten-
tion in visual and language learning [10]. For example, GANs
are commonly used to produce counterfactual images, which
learn causal representations for enhancing model performance.
In [12], the authors consider changing domains as interventions
on images under the data-generation process and steer the gen-
erative model to produce counterfactual features, which helps
the model learn causal relations across different domains. Im-
age generation process is decomposed into independent causal
mechanisms in [10]. Different proper generators are used to
produce image shape, texture, and background. Then the pro-
duced elements are combined to infer counterfactual images.
Steer generative models are proposed in [11] to manufacture
interventions on features caused by confounding factors, such
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as viewpoint or background, for learning causal representations.
Researchers also design a model to generate counterfactuals by
incorporating a structural causal model in an improved variant of
Adversarially Learned Inference for image classification [50].

Due to the data structure differences, these methods of
generating counterfactual images cannot be applied to graph-
structured data, which motivates us to design a novel Granger
causality-based causal explanation method to extract the core
subgraphs. Keeping core subgraphs unchanged allows us to
steer the generative model to perform interventions on envi-
ronment subgraphs for generating the counterfactual subgraphs.
Meanwhile, by incorporating the newly designed counterfac-
tual graph-based contrasting loss and consistency regularization
term, our model achieves significant improvements on network
anomaly detection.

VII. CONCLUSIONS

In this article, we proposed a counterfactual graph-based
anomaly detection model CFAD, which can conduct anomaly
detection with varying environments based on a few labeled
anomaly nodes. We designed a novel intervention mechanism
by steering the generator to manufacture the synthetic envi-
ronment features. These features are combined with the real
representations of the core nodes to generate counterfactual
subgraphs, which help the detection model learn transferable and
causal relations across different environments without relying on
many labels. Extensive experiments show the proposed approach
achieves state-of-the-art performance on three public real-world
attributed network datasets.

For future work, we plan to explore the node dependency
and network structure to further enhance the designed model.
Also, we will apply the method of generating counterfactual
subgraphs to other applications, such as node classification,
graph classification and link prediction. We are interested in
investigating whether this approach can be helpful to eliminate
spurious correlations during model training and enhance the
performance for these tasks.
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