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ABSTRACT
Inferring the citywide urban traffic flows is critical for nu-
merous smart city applications such as urban planning, traffic
control, and transportation management. Urban traffic flow
inference problem aims to generate fine-grained flow maps
from the coarse-grained ones. It is still challenging due to the
lack of handling uncertainties of flow distributions and com-
plex external factors that affect the inference performance. In
this work, we propose a diffusion probabilistic augmentation-
based network for considering the uncertainties of urban
flows with a relaxed structural constraint and a disentangled
scheme for flow map and external factor learning. Experi-
ments are conducted on four large-scale urban flow datasets,
and the results show that our method achieves significant
performance improvements over strong baselines.

Index Terms— Fine-grained urban flow inference, urban
computing, diffusion probabilistic modeling, mobile sensing

1. INTRODUCTION

Inferring and predicting fine-grained citywide urban traffic
flows benefit numerous transportation fields such as city traf-
fic monitoring, urban planning, and intelligent traffic manage-
ment. For example, spatial-temporal traffic flow patterns are
studied in [1] to forecast future traffic flows accurately, and
geo-contextual multi-task embedding learners are utilized in
[2] for transportation scenario planning.

Typical transportation systems often require a large num-
ber of monitoring sensors to obtain a fine-grained view of the
traffic conditions (e.g., taxi, bike, and crowd flows), which
needs expensive maintenance, deployment, and electricity
costs every year [3, 4, 5, 6, 7, 8]. As an important task in
urban computing, fine-grained urban traffic flow inference
(FUFI) aims to infer the fine-grained urban flows from the
coarse-grained ones. FUFI can effectively reduce the number

This work was supported in part by the NSFC under Grant Nos.
62062077 and 62176043, NSF of Sichuan Province, China, under Grant No.
2022NSFSC0505, Sichuan Science and Technology Program under Grant
No. 2020YFG0053, and NSF under Grant SWIFT No. 2030249.

Corresponding author: Xucheng Luo, xucheng@uestc.edu.cn.
This is the author version of the paper presented at ICASSP ’23.
doi: 10.1109/ICASSP49357.2023.10096169

of deployed devices while keeping the original data granular-
ity unchanged and the inference accuracy satisfactory.

Existing FUFI methods generally followed the learning
scheme of single image super-resolution (SISR) and addition-
ally considered the rich external factors (e.g., date, weather,
and holidays that may greatly influence the volumes of urban
flows) and the structural constraint imposed by FUFI. For
example, UrbanFM [9] – which first formulates the FUFI
problem – devised a convolutional network-based feature
extractor to handle the spatial flow correlations and an N2-
Normalization layer to distribute inferred urban flows. FODE
[10] proposes an ordinary differential equation-based model
to overcome the unstable gradient computation problem in
FUFI and balances inference accuracy and computational
efficiency. UrbanPy [11] extends UrbanFM by employing
a pyramid architecture with geographic embeddings, non-
shared convolution, and distributional loss.
Limitation. Notwithstanding the improvements achieved
on FUFI, prior methods confront several key limitations: (i)
The urban traffic flows are inherently dynamic under signif-
icant uncertainty, they are influenced by many factors, such
as emergency events, weather conditions, and traffic jams.
Although certain factors are considered by existing methods,
many other factors, whether endogenous or exogenous, ex-
plicit or implicit, greatly affect the flow distribution. Thus,
there is a need for deterministic methods for handling of flow
uncertainties. (ii) Existing models usually adopt the distri-
butional upsampling [9] to obey the structural constraint of
FUFI and speed the model’s convergence process. However,
given that information loss will inevitably lead to inference
errors when upsampling the coarse-grained flow map, the
too strict structural constraint will force the model to allo-
cate more (or less) flow volumes to certain regions and, as a
result, lowers the inference performance. (iii) The learning
of flow map features and the learning of external factors are
often performed jointly in existing methods. Although this
scheme is efficient, the learned tangled feature maps sacrifice
interpretability and may further lead to overfitting.
Present work. To address the limitations mentioned above,
we propose a Diffusion Probabilistic modeling-based network
for fine-grained Traffic Flow Inference (DP-TFI) – a novel
framework integrating urban flow uncertainties and relaxed
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Fig. 1. The framework of DP-TFI. It takes the coarse-grained flow map and external factors as two streams of inputs and uses
diffusion probabilistic augmentations and relaxed distributional upsampling to infer the fine-grained traffic flow maps.

structural constraint in a disentangled manner. Specifically,
(i) we design a probabilistic urban flow augmentor that pro-
gressively generates new fine-grained flow maps from a sim-
ple distribution (e.g., an isotropic Gaussian) into a data dis-
tribution. The generated flow maps can be seen as different
instances with uncertainty linked back to the same coarse-
grained flow map. (ii) we relax FUFI’s structural constraint
by a new distributional upsampling layer that is both flexible
and effective. (iii) we employ a disentangled learning scheme
for urban flow dynamics and external factors. Extensive ex-
periments conducted on four large-scale citywide urban flow
datasets demonstrate the effectiveness of our proposed DP-
TFI model over state-of-the-art FUFI baselines.

2. PROBLEM DEFINITION

In this section, we first give the necessary background infor-
mation, and then formally define the problem of FUFI.

Definition 1 (Grid Flow Map). Given a city flow map X ∈
RI×J

+ partitioned into I × J grid, each entry xij of the map
denotes the traffic flow volume during a period of time.

Definition 2 (Superregion and Subregion). The map cells in
the coarse-grained flow map are superregions and the map
cells in the fine-grained flow map are subregions. Each of the
superregions in the coarse-grained flow map corresponds to
N × N subregions in the fine-grained flow map. Here N is
the scaling factor.

Definition 3 (Structural Constraint). Given a superregion and
its corresponding N2 subregions, the flow volume xc

ij in the
superregion is equal to the sum of volumes in the subregions:

xc
ij =

∑
i′,j′

xf
i′j′ , s.t.⌊ i

′

N
⌋ = i, ⌊ j

′

N
⌋ = j, (1)

where i = 1, 2, . . . , I and j = 1, 2, . . . , J .

FUFI problem: given a coarse-grained flow map Xc ∈ RI×J
+

and its corresponding external factors f ∈ Rdf , we aim to
infer the fine-grained flow map Xf ∈ RNI×NJ .

3. METHOD

The overview of the proposed DP-TFI is depicted in Fig. 1.
Disentangled Flow Feature Learning. For a coarse-grained
flow map Xc and its corresponding external factors f , we use
two streams of convolutional neural networks to learn their
representations in different latent spaces. Specifically, we use
three convolutional layers – each has 3x3 filter size, F filters,
and followed by a ReLU activation function – to learn low-
level hidden feature maps Hc ∈ RI×J×F . Then we upscale
the coarse-grained feature map to fine-grained feature maps
Hf ∈ RN×J×F via stacked PixelShuffle and convolutional
layers. For external factor learning, we first transform f into
representation via multiple embedding layers and dense lay-
ers, then we transform the representation to an external factor
feature map Hef ∈ RNI×NJ×1 via stacked PixelShuffle and
convolutional layers. In doing so, the learning of external fac-
tor feature maps Hf are decoupled with the learning of flow
feature maps Hef , which encourages the inference network to
learn urban flow dynamics solely based on the internal char-
acteristics of the flows, e.g., regional differences and spatial
dependencies.
Relaxed Structural Constraint. Traditional FUFI methods
often impose a too strict structural constraint during urban
flow map inference. For example, the N2-Normalization
layer ensures that the sum of inferred flow volumes in the
subregions equals the corresponding flow volume in the su-
perregion. We propose a Relaxed Distributional Upsampling
(RDU) module that allows the model to allocate additional
or reduced flow volumes to subregions. Given the fact that
information loss and inference errors are inevitable, RDU



can help the model to infer more accurate flow maps for
certain important regions without worrying too much about
the flow budget. Specifically, given the last flow feature map
Hfl = Hf⊕Hef , we infer the final fine-grained flow map by
a relaxed N2-Normalization layer. We generate fine-grained
flow distribution by:

H̃fl
i′j′ = Hfl

i′j′ /

i′=(⌊i/N⌋)N
j′=(⌊j/N⌋)N∑

i′=(⌊i/N⌋−1)N+1
j′=(⌊j/N⌋−1)N+1

Hfl
i′j′ , (2)

where H̃fl
i′j′ ∈ [0, 1]. Then we use nearest neighbor upsam-

pling with a relax coefficient µ and the scaling factor N to
obtain the upscaled flow map Xc

relax ∈ RNI×NJ
+ :

Xc
relax = Upsampling(Xc

up)⊗Rf , (3)

Rf = 2µSigmoid(Conv2d(Hf ))− (µ+ 1)J, (4)

where J is the all-ones matrix and Rf ∈ RNI×NJ is the
relaxed flow matrix. At last, we have inferred fine-grained
flow map as: X̂f = Xc

relax ⊗ H̃fl. The optimization of the
model is guided by mean squared error (MSE) between the
inferred map and the ground truth:

Lloss = ||X̂f −Xf ||2.
Diffusion Probabilistic Augmentor. To handle the uncer-
tainties of the urban traffic flow inference process, we intro-
duce a diffusion probabilistic augmentor (DPA) [12, 13, 14]
to progressively generate new fine-grained urban flow maps
from a simple distribution into a more complex data distribu-
tion. As shown in Figure 1, DPA takes a source fine-grained
urban flow map Xf as input, then it uses a forward Marko-
vian diffusion process q to add Gaussian noise to Xf

0 = Xf

through T iterations gradually:

q(Xf
1:T |Xf

0 ) =

T∏
t=1

q(Xf
t |Xf

t−1), (5)

q(Xf
t |Xf

t−1) = N
(
Xf

t |
√
αtX

f
t−1, (1− αt)I

)
, (6)

where α1:T are hyper-parameters. We then define a reverse
Markovian diffusion process pθ which is the opposite of the
forward process:

pθ(X
f
0:T |Xf ) = p(Xf

T )

T∏
t=1

pθ(X
f
t−1|Xf

t ,X
f ), (7)

p(Xf
T ) = N

(
Xf

T |0, I
)
, (8)

pθ(X
f
t−1|Xf

t ,X
f ) = N

(
Xf

t−1|σθ(X
f ,Xf

t , γt), σ
2
t I
)

(9)

We then pass the generated new traffic flow map Xf
0 through

the N2-Normalization layer to obey the structural constraint
and ensure Xf

0 is not too different from the original map. We
use the DPA to help the inference model learn better flow map
features with uncertainty and make the model more robust.

Table 1. Data Statistics of TaxiBJ
Data TaxiBJ

time span P1: Jul 1, 2013 - Dec 31, 2013
P2: Feb 1, 2014 - Jun 30, 2014
P3: Mar 1, 2015 - Jun 30, 2015
P4: Nov 1, 2015 - Mar 31, 2016

time interval 30 minutes
coarse-grained map size 32x32
fine-grained map size 128x128
upscaling factor N 4
latitude range 39◦49’12N - 39◦59’24N
longitude range 116◦15’36E - 116◦29’24E

temperature (◦C) [-24.6, 41.0]
wind speed (mph) [0, 48.6]
weather condition 16 types

4. EXPERIMENTS

Data. The traffic flow data are collected from the citywide
taxi flows in Beijing city from 2013 to 2015 [9] and are di-
vided into four time spans (P1-P4). Detailed statistics of the
data as well as external factors are shown in Table 1.
Baselines. To verify the effectiveness of our proposed DP-
TFI method, we compare it with ten baselines including six
SISR methods and four FUFI methods. (1) SRCNN [15]: is
a convolutional SISR neural network. (2) ESPCN [16]: is
a real time SISR model that proposes an efficient sub-pixel
layer for feature map aggregation. (3) VDSR [17]: uses a deep
learning-based residual architecture. (4) DeepSD [18]: is a
statistical upscaling method for meteorological data which
stacks multiple SRCNNs for SISR. (5) SRResNet [19]: stacks
many residual blocks and employs perceptual loss for SISR.
(6) LapSRN [20]: does not require bicubic interpolation
and progressively reconstructs sub-brand residuals of fine-
resolution images. (7) UrbanFM [9]: is the first work studies
FUFI problem, which designs a residual-based inference
network and an N2-Normalization layer. (8) FODE [10]:
introduces ordinary differential equations (ODEs) to balance
the flow inference accuracy and computational efficiency. (9)
UrbanODE [7]: incorporates two neural ODE blocks with
attention mechanism. (10) UrbanPy [11]: extends UrbanFM
by a cascading model for progressive urban flow inference
and is the state-of-the-art for FUFI.
Experimental Settings. We use Adam optimizer with an
initial learning rate of 1e−3. For a fair comparison, for all
baselines and our model, the number of base channels F and
batch size are set to 128 and 16, respectively. We implement
our model with Torch library on GeForce RTX 3090 GPU.
To evaluate the model performance from multiple facets, fol-
lowing previous FUFI methods [9, 10], we use three common
metrics: root mean square error (RMSE), mean absolute error
(MAE), and mean absolute percentage error (MAPE).



Table 2. Performance comparison between proposed DP-TFI and baselines.
Data TaxiBJ P1 TaxiBJ P2 TaxiBJ P3 TaxiBJ P4

Metrics RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

SRCNN [15] 4.297 2.491 0.714 4.612 2.681 0.689 4.815 2.829 0.727 3.838 2.289 0.665
ESPCN [16] 4.206 2.497 0.732 4.569 2.727 0.732 4.744 2.862 0.773 3.728 2.228 0.711
VDSR [17] 4.159 2.213 0.467 4.586 2.498 0.486 4.730 2.548 0.461 3.654 1.978 0.411
DeepSD [18] 4.156 2.368 0.614 4.554 2.612 0.621 4.692 2.739 0.682 3.877 2.297 0.652
SRResNet [19] 4.164 2.457 0.713 4.524 2.660 0.688 4.690 2.775 0.717 3.667 2.189 0.637
LapSRN [20] 3.997 2.040 0.339 4.353 2.235 0.324 4.539 2.343 0.330 0.351 1.841 0.315

UrbanFM [9] 3.949 1.997 0.330 4.359 2.227 0.323 4.519 2.319 0.326 3.514 1.821 0.314
FODE [10] 4.058 2.142 0.403 4.432 2.377 0.395 4.628 2.490 0.417 3.583 1.947 0.396
UrbanODE [7] 4.042 2.135 0.406 4.432 2.357 0.394 4.601 2.460 0.408 3.559 1.929 0.391
UrbanPy [11] 3.944 1.998 0.333 4.315 2.210 0.323 4.436 2.272 0.318 3.470 1.801 0.313

DP-TFI 3.853 1.926 0.298 4.240 2.144 0.292 4.404 2.227 0.287 3.429 1.759 0.292

(a)

Generated Flow Map

(c) (d)

Relax Matrix

(b)

Fig. 2. Experimental analysis on TaxiBJ P1 dataset. (a): Case study of generated flow map; (b) the relax matrix entry value
distribution and the relax matrix (inset); (c) parameter sensitivity of relax coefficient; (d) ablation study on three variants.

Experimental Results. The FUFI inference performance be-
tween our proposed DP-TFI and baselines on TaxiBJ P1-P4
datasets are shown in Table 2. We can see that DP-TFI has the
best performance on all four datasets in terms of both RMSE,
MAE, and MAPE. SISR-based methods generally perform
worse than FUFI-based methods, which is because they do
not take external factors into account and neglect the struc-
tural constraint imposed by FUFI. FIFU-based methods such
as UrbanODE and UrbanPy achieve better performance due
to their capability to fuse external factors and more powerful
feature learning architecture. However, they cannot handle
urban traffic flow uncertainties, and the external factor fusion
is tangled with flow maps which may reduce the inference er-
rors. Moreover, the too strict structural constraint limits the
model on allocating accurate flows to subregions.

Analysis. In Fig. 2, we conducted several analyses of DP-
TFI’s model behaviors. First, we showed a case flow map
generated by the diffusion probabilistic augmentor, which
largely preserves the flow characteristics of the source flow
map but also introduces uncertainty. The relax matrix value
distribution indicates that the model prefers to break the struc-
tural constraint for most of the subregions (relax coefficient
is set to 3%). Specifically, those regions with heavy traffic
flows will have more allocated flows and vice versa. We also
analyzed the influence of relax coefficient µ, which deter-

mines how flexible we allow the model to allocate flows. We
varied the coefficient from 0 to 0.1, the result showed that µ
around 0.02 leads to better performance. At last, we ablated
the three proposed modules by removing any one of them in
DP-TFI. The three variants are denoted as w/o EF (without
external factor), w/o DPA (without diffusion probabilistic
augmentor), and w/o RDU (without relaxed distributional
upsampling). We can obverse that external factor fusion con-
tributes the most to the improvement, which suggests external
factors are essential for inferring an accurate traffic flow map.
Not surprisingly, combining all modules achieves the best
performance, which again verifies our motivation that mod-
eling the uncertainties and (slightly) relaxing the structural
constraints are beneficial for FUFI.

5. CONCLUSION

In this paper, a novel probabilistic model DP-TFI has been
proposed to tackle the task of fine-grained urban traffic flow
inference problem. It uses a diffusion probabilistic augmentor
to handle the urban flow uncertainties and relax the structural
constraint in a disentangled manner. Future work can fur-
ther take the external factors and coarse-grained flow maps as
conditions for probabilistic flow map generation and use loss
regularization techniques to optimize the inference process.
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