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Learning Spatio-Temporal Manifold Representation
for Probabilistic Land Deformation Prediction

Xovee Xu, Ting Zhong, Fan Zhou, Rongfan Li, Goce Trajcevski, and Qinggang Meng

Abstract—Landslides refer to occurrences of massive ground
movements due to geological (and meteorological) factors, and
can have disastrous impacts on property, economy, and even
lead to the loss of life. The advances in remote sensing pro-
vide accurate and continuous terrain monitoring, enabling the
study and analysis of land deformation which, in turn, can
be used for land deformation prediction. Prior studies either
rely on pre-defined factors and patterns or model static land
observations without considering the subtle interactions between
different point locations and the dynamic changes of the surface
conditions, causing the prediction model to be less generalized
and unable to capture the temporal deformation characteristics.
To address these issues, we present DyLand, a dynamic manifold
learning framework that models the dynamic structures of the
terrain surface. We contribute to the land deformation prediction
literature in four directions. First, DyLand learns the spatial
connections of InSAR measurements and estimates the condi-
tional distributions on a dynamic terrain manifold with a novel
normalizing flow-based method. Second, instead of modeling
the stable terrains, we incorporate surface permutations and
capture the innate dynamics of the land surface while allowing
for tractable likelihood estimations on the manifold. Third, we
formulate the spatio-temporal learning of land deformations as a
dynamic system and unify the learning of spatial embeddings and
surface deformation. At last, extensive experiments on curated
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real-world InSAR datasets (land slopes prone to landslides) show
that DyLand outperforms existing benchmark models.

Index Terms—Land deformation prediction, geoscience, graph
neural network, landslide, manifold learning.

I. INTRODUCTION

LANDSLIDES are among the most common catastrophic
hazards in various areas, posing significant threats to hu-

man lives, properties, and vital infrastructures [1]. The causes
of these hazards may come from a variety of complicated
reasons, including natural and human activities, e.g., volcanic
eruption, overuse of groundwater, cloudburst, earthquake, or
even vegetation changes due to seasonal climate oscillations
and global warming [2]. These factors often occur suddenly
and are hard to predict, making it difficult and challenging to
assess and manage landslide risks. A recent major landslide
occurred at Hpakant, Myanmar, on July 2, 2020 (directly due
to heavy rains), causing a death toll of at least 168 people [3].
Monitoring landslide-prone areas in real-time are important
for early warning systems and landslide activity analytics [4]–
[6], and the advanced geodetic techniques in remote sensing,
such as Interferometric Synthetic Aperture Radar (InSAR) and
Global Navigation Satellite System (GNSS), enable accurate
monitoring of slope deformations and forecasting potential
landslides, which have recently been studied [7]–[9].

Earlier works on landslide risk assessment and detection
mainly depend on (1) multidisciplinary expert knowledge
from geotechnics, meteorology, and sociopolitical sciences; (2)
pre-defined influential factors such as climate, rock stability
and slope gradient [10], [11]. These knowledge are used to
estimate the probability of landsliding, design decisive features
for landslide prediction, and provide us with explainable
predictions about why and what factors contribute most to the
occurrence of hazards. For example in [12], the authors con-
ducted feature selection and then used k-means to identify the
threshold of slope instability. Patterns discovered from remote
sensing images provide vital information for landslide classi-
fication and subsequent decision-making. However, designing
such systems requires extensive expert knowledge and effort
and is usually limited to post hoc explanations. The studied
areas and collected data are also relatively small-scale due to
the constraints of labor resources and field surveys, narrowing
the generalizability of the underlying system in places with
different land environments and weather conditions. On the
other side, data-driven and feature-engineering approaches are
also restricted by the noises and uncertainties intrinsically
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existed in the land deformation data, or failed to reflect the
landslide predisposition due to data and metric biases [13].

Many studies [14], [15] learned landslide dynamics with
machine learning techniques through leveraging the rich mea-
surements of weather, surface, vegetation, and geology. Vari-
ous traditional models have been exploited in the literature,
including analytical hierarchy process [16], Bayesian net-
works [17], logistic regression [18], ensemble learning [19],
and statistical learning [20]. However, they are still inadequate
for probabilistic modeling and inference on the surface, which
is essential for land stability estimation (inferring the dis-
tribution of deformations and understanding the mechanisms
behind the deformations). While some recent works [21]–[23]
estimate the distribution on the low-dimensional manifold,
they focus on static surfaces. Estimating the density on a
dynamic manifold remains a challenge.

More recently, the advances of deep neural networks have
inspired several novel landslide prediction and inference mod-
els. Specifically, Convolutional Neural Networks (CNNs) are
widely used for landslide susceptibility mapping [8], [24],
which generally rely on inventory mapping from the InSAR
data to outline the landslide boundaries and deformation
features. For example, LACNN [8] is a locally aligned CNN
model that takes the orientation of each pixel at multiple
scales to capture hidden features, and assess the landslide
susceptibility at a specific point. Graph Neural Networks
(GNNs) are also used to model land deformations, e.g., SA-
GNN [25] embeds the 3D surface into a 2D graph with locally
linear embedding [26] and preserves the relative positions and
slopes of adjacent points on the surface. It then uses a Spatial-
Temporal GNN to capture the characteristics of neighboring
points and predict the terrain deformations.

Despite the achieved promising results, existing land de-
formation models still confront several challenges. First, they
either exploit 2D CNNs to extract the feature maps [8]
or project the surface into a plain graph [25] – inevitably
introducing errors and, more importantly, ignoring vital in-
formation (e.g., azimuth, orientations, slopes) for assessing
the stability of the surface. Second, sequential methods which
study the periodic displacements and influential factors ignore
the spatial correlations of land locations [27]. Third, the InSAR
observations, represented as point cloud, are associated with
temporal deformations beyond geographical position of the
monitored areas. Therefore, directly applying these methods to
the point cloud manifold [28]–[30] are insufficient to capture
the dynamic deformation patterns of the surface.

In this paper, we propose a novel probabilistic manifold
learning model called DyLand for dynamic land deformation
forecasting. Different from previous studies that project the 3D
point clouds to 2D space, we directly model the spatial struc-
tures on the manifold without the loss of important geometric
information caused by dimension reduction. We extend our
previous work [30] by simultaneously capturing the topologi-
cal dependencies and temporal deformations. DyLand consid-
ers the dynamics of surface and collective deformation trend in
a unison, rather than learning them separately. As a principled
dynamic manifold learning framework, DyLand generalizes
normalizing flows [31] for density estimation on the manifold

surface while preserving the intricate dynamics of the contin-
uously changed terrains.

In sum, our main contributions are four-fold:
• We explicitly explore the land surface dynamics and topo-

logical dependencies between monitored locations. We
illustrate the conceptual limitations of existing methods
and tackle two fundamental drawbacks by learning dy-
namic manifold and unifying the co-evolution of temporal
surface deformations and spatial representations.

• We propose to estimate the dynamic manifold density that
has not been studied before. Our method generalizes flow-
based generative models to learn a probability density
over the manifold, while preserving the dynamics via a
local deformation perturbation strategy.

• We formulate the spatio-temporal learning of land de-
formation as a dynamic system, and introduce neural
ordinary differentiable equations to unify the learning of
spatial embedding and surface deformation. We model the
terrain dynamics in the continuous domain while better
approximating the optimal deformation posterior.

• We collect real-world InSAR point cloud data of slope
evolution and conduct extensive experiments to evaluate
the effectiveness of the proposed model.

The reminder of this paper is organized as follows. In the
next section, we review and discuss the related work. Section
III introduces necessary preliminaries. We then present the
details of DyLand methodology in Section IV, where we
show how the spatial manifold dependencies and temporal
land deformations are unified by dynamic manifold learning
and probabilistic density estimation, respectively. Section V
shows the performance of DyLand and baselines on real-world
land deformation data and gives intuitive explanations and
visualizations. At last, we conclude this paper in Section VI.

II. RELATED WORK

Previous work on landslide forecasting primarily focus on
expert and statistical systems, manifold learning on the remote
sensing maps, as well as convolutional neural networks and
graph neural networks. We now review the literature that
closely related to our work.

A. Geometric and Manifold Learning

Geometric graph data are often represented as nodes, edges,
and their associated features. They are arranged irregularly and
may scale from tens to millions of nodes and edges, which
brings difficulties in learning their effective representations
and finding helpful data patterns. On the other side, manifold
data refer to geometric shapes and surfaces (e.g., the terrain
surface of the studied area). One goal of geometric and
manifold learning is to describe these topological data in low
dimensional space [32], which gives us a great convenience
to adopt typical operations such as convolution and pooling to
feasibly processing and analyzing them [33].

However, for a specific point in the manifold, it is not
straightforward to find its nearest neighbors, nor to determine
the number of them. In addition, judging point similarities
in the original space and maintaining their properties in the
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latent space are also critical for manifold learning algorithms.
Existing works addressing these challenges in different ways.
Locally linear embedding methods [34] represent each data
point in the manifold using its nearest neighbors. In [35], the
authors propose to measure the distance between two data
points by their geodesic or shortest path. Student t-distribution
is utilized in [36] to compute the similarity between two points
in the latent space. Based on the assumption about data on
Riemannian manifold, fuzzy topological structures are learned
in [37]. More recent studies [38], [39] have shown that flow-
based generative methods can learn better manifold structures
by adopting invertible and bijective mappings, achieving state-
of-the-art performance. Other aspects of manifold learning,
e.g., denoising and out-of-distribution detection [40], can be
implemented simultaneously. Different from existing static
manifold methods, our approach integrates dynamic manifold
by explicitly considering the temporal land deformations.

B. Land Deformation Forecasting and Susceptibility Mapping

Forecasting the deformation of landslides is a long-standing
research topic that aims to monitor the terrain surface and
assess the risk of catastrophic hazards such as landslides, land
subsidence, debris and mudflows which could pose significant
threats to human lives, properties, and vital infrastructures [1].
They occur due to the gravity and/or elevation, and defor-
mations of the terrain surface caused by numerous factors,
such as water infiltration, glacier melting, aquifer exploitation,
rock erosion, earthquakes, and volcanic eruptions [2]. Tradi-
tional landslide learning and prediction methods largely rely
on handcrafted features and expert domain knowledge. For
example, the technology of geographical information system
(GIS) and probabilistic modeling are combined to produce
susceptibility maps based on multi-layer spatial data [41]. The
satellite remote sensing images are incorporated into an expert
decision support system to conduct image classifications and
multi-category threshold identification based on slope instabil-
ity [12]. However, these methods often face the problems of
data sparsity and poor generalization capability.

High precision InSAR and remote sensing techniques are
now ubiquitously used by researchers and practitioners to
monitor land surface deformation and identify unstable land
slopes. In addition to common features like texture and color
extracted from images, many works resort to automatic de-
tection/learning methods. In particular, the advances of deep
neural networks and rapidly increased computing power have
inspired many novel methods for landslide-related tasks in
recent years [24], [25]. Among them, CNNs have been estab-
lished as a standard tool for learning visual knowledge from
aerial images. For example, [42] adopts CNNs to recognize
landslide based on texture changes. CNNs and GANs are
utilized to obtain high-quality InSAR images via image super-
resolution techniques [43]–[45]. Another example is LACNN
[8], the authors create a two-stage CNN framework to gen-
erate the desired probability map: a down-sampling stage for
capturing the local and global properties of the input image;
and an up-sampling stage based on interpolation. LACNN
incorporates orientational information into CNNs which is

TABLE I
MATHEMATICAL NOTATIONS

Symbol Description

A Adjacency matrix of the point cloud V.
M Dimension of the latent variables.
N Number of monitored locations in the studied area.
S Temporal land deformation observations.
T Time.
V Point cloud of terrain surface, consisting of N locations.
W Spatial representation of the point cloud V.
U Latent factor encodes the point cloud locations V and

temporal deformation S.
yτi The deformation of the i-th location at time τ .
Y Predicted deformations.

suitable for landslide susceptibility mapping. One notable
limitation of CNN-based methods is the lack of modeling
spatial correlations in non-Euclidean space.

Based on the InSAR point cloud maps that contain rich
spatial information, graph-based approaches are proposed for
land deformation forecasting. Point cloud data can be naturally
represented as nodes and edges in GNNs. Both internal and
external factors such as weather, point distance and soil con-
dition can be used as node/edge features for data aggregation
in non-Euclidean space. In [25], the authors proposed SA-
GNN model for landslide prediction. Specifically, SA-GNN
designs a slope-aware locally linear embedding module for
preserving the spatial characteristics of a point cloud. Despite
their improved performance in forecasting land deformations,
temporal dynamics of the land surface are often absent. In this
work, we unify the spatial and temporal learning processes
into a dynamic system and introduce a novel normalizing
flow-based method for estimating the density of manifold
surfaces in the continuous-time domain. The proposed method
relieves the need for feature engineering and is capable of
simultaneously incorporating various landslide-related factors.
Unlike CNN-based models, which overlook vital surface in-
formation such as azimuth and orientation, our model utilizes
InSAR point cloud data to accurately represent the monitored
locations. Moreover, we extend static point cloud represen-
tations to encompass topological dependencies and temporal
deformations, unifying them for enhanced land deformation
prediction.

III. PRELIMINARIES

In this section, we first formally define the land deformation
forecasting problem, and then give necessary background
about spatio-temporal graph neural networks (ST-GNNs). The
frequently used mathematical notations are summarized in
Table I.

The InSAR point cloud data corresponds to a collection
of N monitored locations, each with a unique coordinate
(longitude, latitude, and elevation). Then the point cloud can
be represented as a vector of triplets V ∈ RN×3. Each
location is associated with a temporal sequence which is the
deformation observations, denoted as S ∈ RN×T . Here T is
the sequence length. The land deformations of the point cloud
at timestamp τ are denoted as Sτ ∈ RN×1. Then we formulate
the land deformation forecasting problem as follows:
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T DyLandST-GNNs

Fig. 1. Illustration of the difference between existing ST-GNNs and ours.
Point cloud locations V and temporal land deformations S are inputs of the
model, Y is the predicted deformations. Adjacency A and spatio-temporal
representation W are derived from V and S.

Definition 1 (Land Deformation Forecasting): For a studied
area with N spatial locations V and their associated temporal
deformation observations S, we aim to forecast the surface
deformations Y ∈ RN×T ′

of all N locations in future
timestamps T ′.

This is a typical spatio-temporal prediction problem, given
spatial locations V and temporal deformations S, we predict
the future surface deformation Y:

p(Y|V,S). (1)

To explicitly model the spatio-temporal dependencies between
terrain surface point locations, GNNs are utilized as learning
backbones in existing works [46]. Specifically, for cloud points
V, an adjacency matrix A is introduced to learn their spatio
representations W. Here we need an alternative implementa-
tion of Eq. (1) according to Bayes’ rule:

p(Y,W,A|V,S) = p(A|V,S)p(Y,W|A,V,S) (2)
= p(A|V,S)︸ ︷︷ ︸

Adjacency

p(W|A,V,S)︸ ︷︷ ︸
GNN learning

p(Y|W,A,V,S)︸ ︷︷ ︸
Prediction

, (3)

where the first term p(A|V,S) denotes the adjacency ma-
trix construction; the second term p(W|A,V,S) denotes
the spatio-temporal learning of data structures and historical
observations, which is generally implemented by a specific
GNN architecture, e.g., GCN or GAT; and the last term is the
future temporal forecasting desired by downstream tasks (e.g.,
traffic flows [47] or land deformations studied in this work)
that can be realized by any time-series learning methods, such
as RNNs and ARIMA [48].

IV. METHODOLOGY: DYLAND

In this section, we propose a probabilistic manifold learning
model (DyLand) for land deformation forecasting. We first
state our motivation and give an overview of DyLand. Next, we
detail the dynamic manifold learning and spatial representation
extraction. Then, a unified module based on neural ordinary
differential equations (ODEs) is proposed for deformation
forecastings. Finally, the optimization and training processes
are illustrated.

A. Motivation and Overview

In existing spatio-temporal GNNs, the adjacency matrix A
is often built by p(A|V) as the positions of point cloud V are
generally fixed, e.g., the regions in flow prediction [48] and
sensors in traffic forecasting [49], [50]. This, however, may not
fully capture the complex interactions between different point
locations since the land surfaces are continuously deformed.

(c) Forecasting via ODEs
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U = f(V,S|S)
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(b) Dynamic Manifold Learning

Fig. 2. (a) Overview of DyLand. (b) We learn p(A|V,S) through mapping
both temporal deformation S and spatial locations V in a dynamic manifold
space. (c) We forecast and extrapolate the surface deformations p(Y|W,S)
via neural ODEs.
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Fig. 3. Dynamic land displacement heat maps (real terrain).

The spatio-temporal learning of landslides requires a joint
distribution p(Y,W|A,V,S) according to Eq. (2). However,
existing methods often learn spatial representation W directly
from Ω = {A,V,S} which is conditionally independent
of Y, i.e., Ω ⊥⊥ Y|W. Thus, the spatio-temporal joint
distribution is decomposed into two steps:

p(Y,W|Ω) = p(W|Ω)p(Y|W), (4)

where the deformation forecasting p(Y|W) is made without
considering the dynamics of cloud points. We illustrate the
difference between existing ST-GNNs and DyLand in Fig. 1.

An overview of DyLand is given in Fig. 2. Specifically, we
tackle two fundamental drawbacks of previous methods.
• First, we emphasize the importance of temporal deforma-
tion information S beyond Euclidean positions in learning
p(A|V,S) through mapping both S and spatial locations V
in the manifold space, where the similarity among cloud
points and deformations can be better measured. Here, we
propose a probabilistic generative model to learn p(A|V,S)
by incorporating the dynamics of land surface (cf. Fig. 2 (b)
and Section IV-B).
• Second, we model the conditional distribution p(Y|W,S)
jointly with W and S rather than solely relying on W as
in previous methods (cf. Fig. 1). In this way, given spatial
cloud points V and A modeled by p(A|V,S), we are able
to better approximate the optimal deformation forecasting.
Toward this goal, we consider the surface deformations as
a dynamic system and present an approach based on neural
ODEs [51] to predict and extrapolate temporal deformations
as p(Y|W,S) (cf. Fig. 2 (c)) and Sections IV-C and IV-D.
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B. Dynamic Manifold Learning

Land displacement is inherently a dynamic process. As
shown in Fig. 3, for a specific position in the studied area,
its displacement generally follows the trends of neighboring
positions over time. When using GNNs to model such trends
[25], the continuous displacement of the land surface is
ignored because of the static nature of adjacency matrix A.
Besides, the influence of points with the same distance may
not be consistent since the relative positions (e.g., slope and
azimuth) of neighboring points are of great importance for
informing the displacement trends [8], [25].

To train a model that is able to estimate the land deformation
distribution and adapt the static adjacency A to dynamic,
we introduce a latent factor U and assume a deterministic
mapping p(A|U) as:

p(A|V,S) =
∑
U

p(A|U)p(U|V,S), (5)

where the dynamic adjacency generation considers both geo-
graphical locations V and temporal deformation evolution S.

The latent factor Uτ at a specific timestamp τ ∈ [1, T ]
is estimated by a stochastic model Uτ = fU(Vτ ,Sτ |Sτ ),
which jointly generalizes the geographical similarity and local
deformation trend. For the i-th cloud point, the latent factor
ui ∈ U encodes the Euclidean spatial dependency and
temporal deformations of adjacent areas.

Since the land surface is a typical manifold (i.e., 2D
manifold data scattered over 3D space) and is continuously
displaced, we need to estimate the distribution of cloud points
in non-Euclidean space in general. More specifically, we need
a density estimation approach to infer the surface manifold
directly rather than learning it in the 2D space which would
inevitably suffer information loss. A few efforts have been
made to probability density estimation over the manifold.
For example, [21] first defines normalizing flows (NFs) and
estimates the probability density on a Riemannian manifold
embedded in high-dimensional data space. In [22], [23], the
authors investigate the expressiveness and stability of tractable
density on the space that are not diffeomorphic to Euclidean
such as tori and sphere. However, these works define NFs on
static manifold, which cannot be applied to dynamic surface.

To address the aforementioned obstacles, we present an NF-
based approach to capture the cloud point interactions and
deformation dynamics. Specifically, we add the deformation sτi
to the i-th monitored location vi and estimate the distribution
of perturbed vector as v′

i = f−1(uτ
i |sτi ). Then we learn a

transformation from latent factor uτ
i to perturbed location v′

i:

log p(v′
i|sτi ) = log p(uτ

i )− log

∣∣∣∣det ∂f−1(uτ
i |sτi )

∂uτ
i

∣∣∣∣ . (6)

Here we use invertible mappings to transform the uniform
distribution p(uτ

i ) to the desired complex conditional distri-
bution p(v′

i|sτi ). Among various NF variants (cf. [31] for a
comprehensive review), we choose the continuous NF [52],
[53] as it imposes no restrictions on model architecture and

Algorithm 1 Dynamic Manifold Learning
Input: Point cloud locations V ∈ RN×d, land deformations S ∈ RN×T ,

latent factor U, manifold mapping f , start time t0, stop time t1,
Hutchinson’s estimator EH , and pre-determined ODE solver.

1: function f−1
aug([u

t, s], t): ▷ Define augment f with trace estimation
2: Tr = −EH(f−1,ut); ▷ Trace via Hutchinson’s estimator EH

3: ft = f−1(ut, s, t); ▷ Transform the input by f−1 via Eq. (7)
4: return [ft, Tr];
5: end function
6: Initialize τ = 1, i = 1,LU = 0;
7: while τ ≤ T do ▷ For each time in the sequence
8: while i ≤ N do ▷ For each location in the point cloud
9: ut1 = vi + sτi ; ▷ Perturb the monitored locations

10: [ut0 ,Tr] = Solver(f−1
aug , [u

t1 , sτi ], t0, t1); ▷ Solve the ODE
11: log p̂(ut1 |sτi ) = log p(ut0 )− Tr ; ▷ Estimate log density
12: LU = LU − log p̂(ut1 |sτi ); ▷ Add up loss
13: uτ

i = ut0 ; ▷ Get the dynamic manifold embeddings
14: end while
15: end while
16: Minimize LU and obtain the latent factor U via Eq. (8);

the log-density follows the instantaneous change of variable
formula, which can be described as:

uti = ut0 +

∫ t1

t0

f−1(ut, t, sτi )dt, (7)

log p(ut1 |sτi ) = log p(ut0)−
∫ t1

t0

Tr

(
∂f−1

∂ut

)
dt, (8)

where ut1 = v′
i and ut0 = uτ

i , and the trace can be efficiently
computed by Hutchinson’s estimator [54]. The dimensions of
latent factors are restricted to be exactly the same by Eqs. (6)
and (8), which limit the information density of representations
in high dimensional space. Recent studies suggest to use fully-
connected (FC) layers to bridge the gap between different
dimension scales, however, such transformations are difficult
when the dimensions of the original space are very high, but
in our case, the transformation of 3D surface of U is feasible
and easy to train.

Above we have exploited NFs to capture spatial corre-
lations of land surface and dynamics of land deformation,
i.e., p(U|V,S). Then, for any two points with learned latent
factors ui and uj , the mapping p(A|U) is defined as:

p(Aτ |Uτ ) =

N∏
i=1

N∏
j=1

p(Aτ
ij |uτ

i ,u
τ
j ) (9)

with p(Aτ
ij = 0|uτ

i ,u
τ
j ) = sigmoid(∥uτ

i − uτ
j ∥2), (10)

where Aτ
ij ∈ Aτ and the similarity between the two points in

the latent space is estimated with a logistic sigmoid function.
In Algorithm 1, we summarize the training process of

DyLand’s dynamic manifold learning. The time complexity for
computing the unbiased stochastic estimator of the likelihood
is O(d), where d is the dimension of V . The complexity for
evaluating f is O(dC), where C is the largest size of hidden
layers. Overall, the complexity for computing the likelihood
is O(dL(C + 1)), here L is the number of evaluations of f
used by the ODE solver [53].
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Algorithm 2 Training process of estimating p(W|A,V,S)
Input: Dynamic adjacency Aτ , land deformations Sτ .
Output: Spatial representation Wτ .
1: µW = GNNµW (A,S); ▷ Get mean via VGAE
2: logσW = GNNσW (A,S); ▷ Get log standard deviation via VGAE
3: Sample ϵ from standard Gaussian N (0, I2);
4: W = µW + ϵσW; ▷ Reparameterization trick via Eq. (14)
5: Ŝ = FC(W); ▷ Reconstruct Ŝ via Eq. (15)
6: Compute encoder loss by µW and σW (cf. Eq. (13)), then add it to the

reconstruction loss to get the ELBO in Eq. (12);

C. Extracting Spatial Representations

To approximate p(W|Ω) by qφ(W|Ω), we need to maxi-
mize the evidence lower bound (ELBO):

log p(A,S)−DKL(qϕ(W|A,S) ∥ p(W|A,S)) (11)
=Eqφ [log p(A,S|W)]−DKL(qφ(W|A,S) ∥ p(W)), (12)

where V ⊥⊥ W|A and p(W|Ω) = p(W|A,S). Instead of
approximating standard Gaussian N (0, I2) conventionally, we
argue that, W should maintain a similar distribution to S,
where it is aggregated from:

DKL (qφ (Wτ |Aτ ,Sτ ) ∥ p(Wτ )) (13)

≃DKL

(
qφ(W

τ |Aτ ,Sτ ) ∥ N
(
µτ ,στ2

))
=DKL

(
N

(
µw, σ2

W

)
∥ N

(
µτ ,στ2

))
=
1

2

N∑
i=1

M∑
j=1

2 log
σj
i

σw
j
i

+

(
µj
i − µw

j
i

)2

(
σj
i

)2 +

(
σw

j
i

)2

(
σj
i

)2 − 1

 ,

where M is the dimension of latent variables, and Wτ ∈
RN×M . In practice, Wτ can be extracted from dynamic
adjacency Aτ and Sτ by a reparameterization trick as follows:

Wτ = GNNµW
(Aτ ,Sτ ) + ϵ exp(GNNσW

(Aτ ,Sτ )), (14)

where Wτ ∼ N (µW,σ2
W) and ϵ is sampled from standard

Gaussian. We implement the GNN by VGAE [55]. The
reconstruction term (a.k.a. decoder) in Eq. (12) is estimated
by Monte Carlo:

Eqφ [log p(Aτ , sτ |Wτ )] ≃ 1

N

N∑
i=1

log pξ(ŝ
τ
i |wτ

i ). (15)

For simplicity, pξ is FC layers. Other network architectures
can be used here for performance improvement. Algorithm 2
summarizes the training process for estimating the conditional
distribution p(W|A,V,S). The time complexity for comput-
ing the 2-layer graph convolution is O(2EM+2NM2), which
is linear to the number of nodes N and number of edges E.

D. Unifying Deformation and Representation Learning

Now we have obtained the spatial representations W. This
section shows how to unify W with temporal deformations S
for final forecastings.

Recall that W is learned by GNNs – which often suffer
from over-smoothing problem due to the underlying aggre-
gation mechanism, especially when they are going deeper
[46]. Although [56] suggests adding an extra normalization

layer to prevent the representations from being too similar,
it may disturb the regular feature aggregation essential for
learning the local deformation trends and thus deteriorate the
forecasting performance. Meanwhile, existing ST-GNNs [25],
[48] make temporal forecastings based on p(Y|W) which
implicitly assuming Ω ⊥⊥ Y|W (cf. Eq. (4)). However, we
argue that S is indispensable for making better forecastings.
Therefore, we propose to model the co-evolution of temporal
land deformations and spatial representations as a dynamic
system.

Specifically, we build a function g parameterized by neural
networks to model the hidden dynamics of S and W from
current time t0 to forecasting time t1. The function g is a
homeomorphism, which ensures the predicted deformations
preserve the topology of the terrain surface. The forecasting
process is defined as:[

St1

Wt1

]
=

[
St0

Wt0

]
+

∫ t1

t0

g

([
St

Wt

]
, t

)
dt, (16)

where t0 ∈ [1, T ], t1 ∈ [T + 1, T ′], St1 is exactly the
forecasting Ỹ at time t1. The ODEs are solved with adap-
tive Runge-Kutta 4(5) scheme of Dormand-Prince [57]. Let
z0 = [St0 ,Wt0 ]

⊺, at step n+1, the p-order approximation of
zn+1 is given by:

zpn+1 = zpn + h

l∑
i=1

bpiki, n = 0, 1, 2, . . . , (17)

with ki = g(zpn + h

i−1∑
j=1

ai,jkj , tn + cih), (18)

where h is an adaptive step size; vector k denotes the slopes
of g; parameters l, a, b and c are all arranged in a mnemonic
device – a.k.a. Butcher tableau. The local truncation error is
on the order of O(h5), and is calculated as:

en+1 = ztn+1 − z4n+1 = h

l∑
i=1

(
b5i − b4i

)
ki. (19)

This error is used to tune h by giving a maximum error emax:
we half the step size when en+1 ≥ emax; otherwise, we double
the step size. We can see that larger emax expedites the approx-
imation while smaller emax slows it. Algorithm 3 summarizes
the training process of S and W, which complexity is almost
the same as the one in Algorithm 1, i.e., O(dL(C + 1)).

E. Overall Optimization

We now describe how we approximate the desired proba-
bility distributions and the overall optimization of DyLand.

1) Approximating p(Y,W|Ω): Existing methods ignore
the prior distributions of forecasting Y and spatio-temporal
representation W when parameterizing p(Y,W|Ω). Thus, we
propose a variational framework to approximate the intractable
p(Y,W|Ω) by qρ(Y,W|Ω). The Kullback–Leibler (KL) di-
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Algorithm 3 Training process of estimating p (Y|W,Ω) via
co-evolution of the spatial-temporal representations.
Input: Temporal deformations S ∈ RN×T , spatial representations W,

ground truth Y, Hutchinson’s estimator EH , predetermined ODE solver.
Output: Deformation forecastings Ŷ
1: function gaug(zt, t): ▷ Define augment g with trace estimation
2: Tr = −EH(g, zt); ▷ Trace via Hutchinson’s estimator EH

3: gt = g(zt, t); ▷ Transform the input by g via Eq. (16)
4: return [gt, Tr];
5: end function
6: Initialize τ = 1, i = 1, ι = T + 1;
7: while ι ≤ T ′ do ▷ Iteratively make forecasting from T + 1 to T ′

8: t1 = ι ;
9: while τ ≤ T do ▷ For each time in the sequence

10: t0 = τ ;
11: while i ≤ N do ▷ For each location in the point cloud
12: zt0 = [sτi ,w

τ
i ]

⊺; ▷ Initialize the vector
13: [zt1 ,Tr] = Solver(gaug, zt0 , t1, t0); ▷ ODE via Eq. (17)
14: Ỹτ

i = zt1 ; ▷ Obtain future deformations
15: end while
16: end while
17: end while
18: Ŷ = FC([Ỹ]i); ▷ Aggregate forecastings
19: Calculate loss LY = LMSE(Ŷ,Y) + LELBO(Ŷ) via Eq. (25);

vergence measures how one probability distribution is different
from the other one [58], which is derived as:

DKL(qρ(Y,W|Ω) ∥ p(Y,W|Ω)) (20)

=EY,W∼qρ [log
qρ(Y,W|Ω)

p(Y,W|Ω)
]

=EY,W∼qρ [log
qφ(W|Ω)qϕ(Y|W,Ω)

p(W|Ω)p(Y|W,Ω)
]

=EW∼qφ [log
qφ(W|Ω)

p(W|Ω)
] + EY∼qϕ [log

qϕ(Y|W,Ω)

p(Y|W,Ω)
]

=DKL(qφ(W|Ω) ∥ p(W|Ω)) (21)
+DKL(qϕ(Y|W,Ω) ∥ p(Y|W,Ω)), (22)

where ρ, φ and ϕ are parameters of q(Y,W|Ω), q(W|Ω)
and q(Y|W,Ω), respectively (denoted as qρ, qφ and qϕ for
short). According to Eq. (20) we can approximate distribution
p(Y,W|Ω) by the KL divergences of marginals.

2) Approximating p(Y|W,Ω): For observed historical
land deformations [(Sτ

i ,W
τ
i )]τ=0,1,...,T at each cloud point

position i, the final land deformation forecastings Ŷ ∈ RN×T ′

are obtained by aggregating the T temporal deformation rep-
resentation Ỹ ∈ RN×T×T ′

=
[
Ỹτ

i

]
τ=0,1,...,T

via FC layers.

Each of Ỹτ
i is predicted by the ODE module as in Eq. (16).

Besides, the deformations Yτ at a specific time should follow
the prior distribution N (µ,σ2) by approximating the optima
p(Yτ |Wτ ,Sτ ) with a proposal distribution qϕ(Y

τ |Wτ ,Sτ ).
This is achieved by minimizing the DKL term in Eq. (21):

DKL(qϕ(Y
τ |Wτ ,Ωτ ) ∥ p(Yτ |Wτ ,Ωτ )) (23)

=DKL(qϕ(Y
τ |Wτ ,Sτ ) ∥ p(Yτ |Wτ ,Sτ ))

= log p(Wτ ,Sτ )− Eqϕ [log p(W
τ ,Sτ |Yτ )]

+DKL (qϕ(Y
τ |Wτ ,Sτ ) ∥ p(Yτ )),

where the joint distribution is considered invariant. Note that
the mapping from (Wτ ,Sτ ) to Yτ is a bijection thus we

omit the reconstruction term Eqϕ [log p(W
τ ,Sτ |Yτ )]. Overall,

Eq. (23) is simplified as:

DKL(qϕ(Y
τ |Wτ ,Ωτ ∥ p(Yτ |Wτ ,Ωτ )) (24)

≃DKL(qϕ(Y
τ |Wτ ,Sτ ) ∥ p(Yτ ))

=

∫
qϕ(Y

τ |Wτ ,Sτ ) log
qϕ(Y

τ |Wτ ,Sτ )

p(Yτ )
dYτ

=

∫
qϕ(Y

τ |Wτ ,Sτ ) log qϕ(Y
τ |Wτ ,Sτ )dYτ

−
∫

qϕ(Y
τ |Wτ ,Sτ ) log p(Yτ )dYτ

=−H [qϕ(Y
τ |Wτ ,Sτ )]− Eqϕ [log p(Y

τ )]

≃
N∑
i=1

(p (yτi ) log p (y
τ
i ))−

1

N

N∑
i=1

logN
(
yi|µτ

i , (σ
τ
i )

2
)
,

where log p(yτi ) is estimated by the Hutchinson’s estimator,
expectation Eqϕ [log p(Y

τ )] is estimated by Monte Carlo
(Eq. (15)), and H is the entropy. Besides, we assume the
distributions of deformations at time τ and τ+1 are the same.
We minimize the above KL divergence by aggregating all the
model predictions at different locations:

L =
1

N∆T

T ′∑
τ

N∑
i=1

(yτi − ŷτi )
2
+

T ′∑
τ

N∑
i=1

p (ŷτi ) log p (ŷ
τ
i )

− 1

N

T ′∑
τ

N∑
i=1

logN
(
ŷτi |µτ

i , (σ
τ
i )

2
)
, (25)

where ∆T = T ′ − T is the forecasting horizon, τ = T + 1,
yτi and ŷτi denote the ground truth and prediction of the i-th
location at time τ , respectively.

F. Training Details

To remedy the situation that training neural networks of-
ten rely on extensive deformation data, we use simulated
perturbations to pre-train v′

i = f−1(ui|sτi ). Specifically, we
split the studied area into K grids and randomly sample a
perturbed vector rki ∼ N (µk,σk2) for the k-th gird, where
µk ∼ unif [µ−α,µ+α] and σk ∼ unif [σ − β1,σ + β2],
β1 > β2. Then we add the simulated perturbations rki
to each monitored location vi to simulate the deformation.
Subsequently, the deformation distribution is estimated as
v′
i = f−1(ui|rki ). Once the pre-training converged, we can

use the real data to fine-tune f , obtaining a better mapping
between data and manifold.

In addition, we propose a two-stage training strategy in
DyLand – dynamic manifold learning and land deformation
forecasting – rather than training them end-to-end. First, we
argue that the manifold learning should be decoupled from the
forecasting task since the manifold has its physical meaning.
Second, the two-stage training is time- and space-efficient. By
pre-training the manifold, we can free more GPU memories
and have larger batches for the forecasting model.

V. EXPERIMENTS

In this section, we first describe the experimental settings
including datasets, baselines, and evaluation metrics. We then
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TABLE II
DESCRIPTIVE STATISTICS OF DATASETS.

Dataset HZY PBG

time 11/30/2018 - 09/08/2019 11/17/2017 - 01/04/2020
# points 4,569 (west) 2,164 (east) 5,886 (west), 8,671 (east)
displacement [-29.06, 30.50] [-60.45, 110.57]
Long. (E102◦) [1’50”, 3’46”] [46’36”, 54’17”]
Lat. (N29◦) [39’12”, 41’25”] [12’41”, 15’50”]
elevation [1470.2, 2899.6] [661.3, 2101.0]
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Fig. 4. Distribution of land deformations of the HZY datasets. We can see
that the terrain surface deformations generally follow Gaussian distributions.

report the forecasting performance of DyLand compared with
baselines. We also conduct ablation studies and discuss our
main findings.

A. Experimental Settings

1) Datasets: The studied areas used for evaluation are
two real-world landslide-prone slopes in the southwest of
Sichuan province, China, HZY and PBG. We collect InSAR
measurements of the monitored slopes, observing surface
deformations over time. The HZY data is composed by about
nine months of slope observations on both sides of the Dadu
River, between Nov 30, 2018, to Sept 8, 2019. The PBG data is
recorded on a different place of the same river over two years
of InSAR measurements (Nov 17, 2017, to Jan 04, 2020).
Table II summarizes the statistics of the two studied areas.
The land deformation distributions are shown in Fig. 4. The
in-situ maps of the studies areas are shown in Fig. 5, where
we have InSAR observation positions marked on the map.

2) Hyper-parameters & settings: We split the datasets into
training (50%), validation (30%), and test (20%) sets. Geo-
graphical coordinates are max-min normalized. All deep learn-
ing methods are optimized by Adam optimizer with a learning
rate of 10−3 and weight decay of 10−5. Early stopping is
triggered with a patience of 100 epochs. All experiments are
reported by the best result in 20 runs. The latent manifold U
is 3D for evaluation and 2D for visualization. The dimension
of spatial representation W is 5. The deformation for each
location sτi is scaled up by multiplying 10 and then passed
to NF for conditioning, since the scale of sτi is too small
compared to V. The NF and neural ODEs have 3 layers and
a dimension of 64. The ODE Solver is dopri5. The number of
hidden neurons in FC is equal to the input length |S|. Both
FC and GNNs are 3 layers.

3) Baselines: We compare DyLand with the following
sixteen baselines. (i) HA calculates the historical data average
of time period T as a simple heuristic benchmark. We have

T = 1 and T = 3 marked as HA(1) and HA(3), respectively;
(ii) support vector regression (SVR) is a classic time-series
forecasting model; (iii) ARIMA combines autoregressive and
moving average for prediction; (iv) GRU, LSTM, and Bi-
LSTM are recurrent neural networks that have been widely
used for temporal forecasting of landslide displacement [27],
[59]; (v) Transformer [60] is an attention-based model that
achieves better performance than recurrent models on various
language and vision tasks; (vi) NODE [51] is a continuous NF
model that learns time-series by solving ODEs; (vii) GCN [61]
is a classic GNN which models spatial dependencies via graph
convolution; (viii) VGAE [55] is an unsupervised variational
framework making use of latent variables learned from the
GCN autoencoder; (ix) SIG-VAE [62] is similar to VGAE
but has more flexible and complex posterior approximations;
(x) STGCN [46] filters input and hidden states passed to
a recurrent unit via graph convolutions; (xi) P-GNN [29]
is a point cloud graph convolution method, we adapt it to
our problem by adding GRU layers into it; (xii) STGODE
[63] incorporates ordinary differential equations (ODEs) to
capture long-term spatial-temporal features; (xiii) SA-GNN
[25] learns surface manifold embeddings and uses GCNs and
GRUs to model spatio-temporal dependencies. In Table IV,
we list the model size and training time of DyLand and GNN
baselines. The complexity of GNN baselines are mainly from
the operations of graph convolution and dense layers in neural
networks. For STGCN, it approximates graph kernels via
Chebyshev polynomials and first-order approximations, which
is as efficient as DyLand, and its complexity O(N) is also
linear to the number of nodes N . SA-GNN adopts a similar
architecture to STGCN, but with more spatial and temporal
modules that require computation, resulting in longer training
times. STODE uses ODEs to continuously model long-term
spatial-temporal dependencies, which saves model parameters
but is more time-consuming. As for P-GNN, its complexity is
O(N log2 N), which is more expensive than other models. All
models require less than an hour of training time with GPU
acceleration, which are feasible in practical situations.

4) Metrics: We use five standard metrics for evaluating the
forecasting performance. They are: RMSE, MAE, Accuracy
(counted as correct if the forecasting error |yτi − ŷτi | ≤ 0.01),
R Square, and explained variance score (EVS).

B. Land Deformation Forecasting Results

We show the land deformation forecasting results in Ta-
ble III, which reports the performance comparison between
DyLand and baselines on real-world land deformation data
in terms of five metrics. The best results are in bold, where
we can see that our proposed DyLand outperforms baselines
uniformly. We have following observations. First, baselines
simply relying on temporal observations (i.e., they leave out
spatial information of land surface) are not enough to accu-
rately forecast the land deformations. In contrast, graph-based
approaches generally achieve better results, which demon-
strates that spatial relations and collective deformation trends
are critical for forecasting. More in detail, we can see that P-
GNN and SA-GNN perform better than other ST-GNNs since
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TABLE III
OVERALL PERFORMANCE COMPARISONS BETWEEN DYLAND AND BASELINES ON LAND DEFORMATION PREDICTION.

Dataset HZY-West HZY-East PBG-West PBG-East

Method RMSE MAE ACC R2 EVS RMSE MAE ACC R2 EVS RMSE MAE ACC R2 EVS RMSE MAE ACC R2 EVS

HA(1) 4.190 2.799 0.072 0.054 0.161 4.973 3.427 0.056 0.065 0.178 8.348 5.114 0.044 0.062 0.120 6.944 4.194 0.046 0.061 0.117
HA(3) 3.992 2.889 0.052 0.066 0.122 4.645 3.352 0.045 0.094 0.158 7.535 5.186 0.040 0.092 0.142 6.067 4.010 0.050 0.097 0.164
SVR 3.956 3.209 0.030 0.108 0.274 4.750 3.693 0.032 0.135 0.262 6.612 4.199 0.059 0.195 0.291 5.955 3.546 0.076 0.191 0.282
ARIMA 4.888 4.088 0.053 0.265 0.215 6.704 5.395 0.031 0.271 0.204 6.242 4.098 0.035 0.190 0.212 5.325 3.200 0.055 0.175 0.228

GRU 0.250 0.204 0.421 0.223 0.315 0.197 0.170 0.456 0.207 0.290 0.249 0.197 0.460 0.120 0.163 0.200 0.160 0.540 0.215 0.137
LSTM 0.241 0.200 0.433 0.230 0.317 0.192 0.168 0.460 0.213 0.295 0.248 0.195 0.461 0.122 0.164 0.195 0.156 0.548 0.220 0.139
Bi-LSTM 0.240 0.199 0.435 0.230 0.318 0.190 0.165 0.464 0.216 0.299 0.248 0.195 0.461 0.123 0.164 0.193 0.152 0.552 0.224 0.141
Transf. 0.130 0.099 0.614 0.389 0.425 0.143 0.107 0.480 0.387 0.366 0.074 0.045 0.551 0.277 0.258 0.080 0.045 0.696 0.337 0.349
NODE 0.076 0.057 0.527 0.407 0.458 0.101 0.075 0.506 0.469 0.417 0.052 0.044 0.584 0.283 0.291 0.053 0.041 0.710 0.401 0.412

GCN 0.100 0.076 0.442 0.365 0.332 0.103 0.078 0.440 0.399 0.343 0.063 0.050 0.574 0.204 0.208 0.089 0.056 0.662 0.385 0.345
VGAE 0.091 0.068 0.483 0.390 0.391 0.104 0.077 0.465 0.392 0.313 0.051 0.040 0.601 0.375 0.332 0.083 0.052 0.712 0.355 0.348
SIG-VAE 0.088 0.065 0.525 0.374 0.422 0.096 0.071 0.513 0.499 0.440 0.045 0.037 0.734 0.405 0.426 0.079 0.050 0.775 0.408 0.393
STGCN 0.069 0.055 0.533 0.456 0.451 0.078 0.057 0.562 0.563 0.573 0.040 0.029 0.815 0.447 0.488 0.041 0.027 0.854 0.437 0.426
P-GNN 0.065 0.048 0.628 0.423 0.466 0.071 0.051 0.637 0.507 0.516 0.031 0.020 0.908 0.474 0.491 0.032 0.026 0.911 0.441 0.449
STGODE 0.063 0.046 0.645 0.459 0.471 0.069 0.051 0.642 0.505 0.515 0.029 0.019 0.911 0.478 0.494 0.030 0.024 0.916 0.449 0.453
SA-GNN 0.058 0.037 0.718 0.488 0.483 0.062 0.048 0.698 0.497 0.501 0.021 0.015 0.964 0.492 0.480 0.024 0.018 0.956 0.470 0.478

DyLand 0.052 0.035 0.742 0.492 0.492 0.060 0.043 0.700 0.583 0.590 0.013 0.010 0.993 0.538 0.540 0.016 0.013 0.978 0.487 0.496

600m 400m 400m 500m

Fig. 5. Studied landslide-prone areas. InSAR observations are marked on the land surface, and their colors indicate deformation magnitude. From left to
right: HZY-West, HZY-East, PBG-West, and PBG-East. Photos are obtained via Google Earth service.

TABLE IV
COMPARISON OF MODEL PARAMETERS AND TRAINING TIME OF DYLAND

AND GNN-BASED BASELINES ON HZY-WEST.

Method Parameters Time of 100 Iters

STGCN 84,545 20.26 mins
P-GNN 44,995 26.47 mins
STGODE 43,058 28.71 mins
SA-GNN 84,033 36.88 mins
DyLand 18,341 15.96 mins

they are able to capture the complex correlations on manifold.
SA-GNN slightly outperforms P-GNN and STGODE, because
the relative positions such as slope and azimuth are explicitly
embedded, which can partially discriminate the importance of
adjacent points.

When comparing DyLand with the best baseline SA-GNN,
the former is capable of modeling manifold dynamics instead
of the static surface embedding in the later. DyLand alleviates
the bias caused by the surface deformation and considers the
deformation learning and spatial representation as a dynamic
system, which bridges the gap between separate “S” and “T”
learning in previous ST-GNN models – as a result, it is more

accurate for land deformation forecasting.

C. Why Modeling Dynamic Manifold?

We now give our reasons for modeling dynamic manifold by
presenting the visualization, quantitative comparison, as well
as ablation studies of the co-training and hyper-parameters.

1) Visualization of surface representations: Dynamic man-
ifold learning plays an important role in DyLand. We first
provide manifold visualization of DyLand and eight represen-
tative manifold learning methods in the 2D space. They are
LLE [26], MLLE [64], HLLE [34], LTSA [65], t-SNE [36],
WLLE [25], Isomap [35], and UMAP [37]. Recall that Dy-
Land learns the adjacency p(A|V,S) by explicitly considering
the temporal land deformations S. To ensure a fair comparison,
we include S as another temporal channel in addition to
the spatial 3D channels for other models. We visualize the
original 3D land surfaces of PBG west riversides and then plot
the 2D surface representations learned by different manifold
methods in Fig. 6 colored by their geographical coordinates
in the original 3D space. UMAP and t-SNE – as typical
dimension reduction algorithms – over-scattered (clustered)
the surface representations, and therefore lose continuous
spatial correlations essential for deformation forecasting. Other
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Fig. 6. Learned Land manifolds on PBG west riverside.
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Fig. 7. Quantitative comparison between dynamic manifold (DyLand) and
static manifold learning methods. We replace the dynamic manifold in DyLand
with the nine alternatives and report the prediction results (RMSE) as violin
plot. “Euclid” takes original surface as input directly. Box denotes the quartiles
(25% and 75%) and the white line in the box is median value.

static manifold learning methods such as MLLE, Isomap, LLE,
and LTSA can preserve the original manifold due to their
ability to capture local Euclidean topology. However, they
generally model the static manifold and cannot discriminate
the influence of neighboring nodes. WLLE considers the slope
and azimuth information but significantly distorts the latent
representations where local manifold structure is disregarded.
In addition to the subjective visualizations, we also provide
a quantitative comparison between manifold learning methods
since the most meaningful way to evaluate manifold represen-
tations is an actual downstream application.

2) Quantitative comparison on manifold learning: To quan-
tify the benefits of jointly preserving the local manifold struc-
ture and temporal evolution of land deformations in DyLand,
we replace the dynamic manifold learning module in Dy-
Land with nine alternatives. We show the comparison results
(measured by RMSE) in Fig. 7 as violin plot. We can see that
DyLand has more miner prediction errors compared to other
variants. This result validates our motivation by modeling
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Fig. 8. Comparison of manifolds and sampled relevant adjacency matrix over
time on PBG west riverside.

dynamic manifold surfaces in land deformation forecasting.
Although the local topology patterns on the terrain surface can
be preserved in other manifold methods, land deformations are
not explicitly considered, resulting in fixed adjacency and thus
determined neighboring feature aggregation (as they cannot
capture the intricate correlations beyond Euclidean space).

3) Effect of dynamic adjacency modeling: To understand
the dynamic adjacency modeling in DyLand intuitively, we
plot the manifold embeddings at different timestamps in Fig. 8,
as well as the sampled adjacency matrices (framed by the red
rectangle in the top row of Fig. 8). The results show how
embeddings and corresponding adjacency are changing over
time, which is more obvious when observing the adjacency
matrices. DyLand is able to learn dynamic manifold from
deformations and construct the matrices accordingly (i.e.,
interactions among points), allowing us to better capture the
point interactions adaptively without hyper-parameter tuning.
In contrast, static manifold learning approaches are parameter-
sensitive, e.g., presumed near neighbor specification. More
importantly, DyLand generates adjacency A considering both
geographical locations V and temporal deformation obser-
vations S. This property enables the model to dynamically
aggregate deformations for adaptive forecasting.

D. Effect of Co-Training & Hyper-parameter M

Recall that we consider the evolution of spatial represen-
tations W and temporal land deformations S as a dynamic
system solved by neural ODEs, where W ∈ RN×M is learned
by GNNs. Now we investigate the effect of co-training strategy
on land deformation forecasting. First, we introduce two vari-
ants of DyLand: (i) DyLand-S, which removes the learning of
W and makes deformation forecasting only based on temporal
deformation observations, i.e., it degenerates to a typical ODE-
based time-series method [51] through modeling p(Y|S); (ii)
DyLand-W, which removes the learning of S and only utilizes
spatial representation for forecasting, i.e., p(Y|W), similar
to existing ST-GNNs. As illustrated in Table V, modeling
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TABLE V
EFFECT OF CO-TRAINING IN DYLAND.

Model RMSE MAE ACC R2 EVS

PBG West Riverside
DyLand-S 0.052 0.044 0.584 0.283 0.291
DyLand-W 0.019 0.015 0.983 0.497 0.500
DyLand 0.013 0.010 0.993 0.538 0.540

PBG East Riverside
DyLand-S 0.053 0.041 0.710 0.401 0.412
DyLand-W 0.023 0.018 0.965 0.452 0.489
DyLand 0.016 0.013 0.978 0.487 0.496

HZY West Riverside
DyLand-S 0.076 0.057 0.527 0.407 0.458
DyLand-W 0.064 0.045 0.684 0.482 0.464
DyLand 0.052 0.035 0.742 0.492 0.492

HZY East Riverside
DyLand-S 0.101 0.075 0.506 0.469 0.417
DyLand-W 0.063 0.045 0.671 0.491 0.497
DyLand 0.060 0.043 0.700 0.583 0.590
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Fig. 9. Effect of hyper-parameter M (from 0 to 5) during the first 50 epochs
of model training. Y-axis is MSE loss.

the co-evolution of W and S as a holistic dynamic system
significantly improves the forecasting performance. DyLand-
S performs the worst due to ignoring the important spatial
correlations, although it also uses neural ODEs for learn-
ing deformation dynamics. Nevertheless, incorporating S into

DyLand-W on HZY dataset provides a lot of improvements,
e.g., the accuracy are boosted from 68.4% to 74.2% on HZY-
West and from 67.1% to 70.0% on HZY-East.

Co-training S and W with neural ODEs can be seen as
an augmentation to the dynamic system S since the spatial
representations W are also conditioned on the evolution of
land deformations S. In other words, it solves the ODEs
regarding S in an augmented space, which lifts the points into
an additional space for smoother learning. Thus, the dimension
M of W is an important hyper-parameter, as it controls the
output shape of spatial-temporal representation learning that
should be preserved for forecasting.

Fig. 9 plots the training process of DyLand by varying the
values of M from 0 to 5. Note that M = 0 means our model
only uses S for forecasting. Increasing M can explore higher
additional space of W to capture more complex dependencies
and mappings while preserving the point cloud topology.
Although larger M generally makes the model converge fast
and has fewer function evaluations, it is restricted by the
dimension of S. Also, a larger M (e.g., 5) makes the model
unstable, which might be caused by the increasing complexity
of functions required to be approximated in ODEs.

E. Influence of the Priors

At last, we investigate the influence of different priors of
spatial representation W, e.g., N (µ,σ2), N (0, I2), and no
prior (i.e., we replace the VGAE with a deterministic GCN).
The results are shown in Fig. 10, where the averaged standard
deviation σW ≃ 1.2 when approximating N (µ,σ2) and
σW ≃ 0.9 when approximating N (0, I2) – both of which
are significant smaller than the ground truth (cf. Fig. 4).
The mean µW ∈ [−0.05, 0.05] in both cases. Compared
to GCN model, VGAE achieves better performance, which
verifies our motivation that constraining the distribution of
representations helps land deformation forecasting. We also
find that a specially designed prior is beneficial for model
stability, but does not show significant superiority on optimal
results, as observed by similar values of µW and larger values
of σW. While encouraging W to follow a normal distribution
with a large standard deviation, the deviation is still smaller
than expected due to the under-fitting and over-smoothing
problems introduced by VGAE when fitting other parameters.

F. Discussion

DyLand learns the spatial connections and temporal de-
pendencies of land surface InSAR point cloud and combines
them in unison. In addition to its capability of learning
spatial-temporal land deformation dynamics, we also discuss
DyLand’s limitations that are worth further research. First, the
point cloud data we used were collected from landslide-prone
slopes of Dadu River. Other kinds of landslide-prone lands,
e.g., coastal areas, can be used to evaluate the generalization
ability of our model. Second, the distributions of land defor-
mations in our dataset generally follow Gaussian distribution.
New priors may be needed to accurately approximate spatial
and temporal representations for areas with different defor-
mation distributions. Third, many meteorological and edaphic
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Fig. 10. Influence of the prior of W. Y-axis is RMSE.

factors of the studied areas can be incorporated into our model
to enhance the performance of land deformation prediction.

VI. CONCLUSION

We presented DyLand, a general manifold learning model
with application to forecasting land deformations, address-
ing the fundamental limitations of existing approaches in
learning the spatio-temporal characteristics of InSAR point
cloud data. Our novel dynamic manifold model learns de-
formation distribution on the terrain surface with tractable
density estimation, preserving both topological structures and
deformation sensitivity for highly accurate land deformation
forecasting. DyLand also generalizes the dynamic process
of learning temporal deformation and spatial representation
through solving the ODEs of the co-evolution dynamic sys-
tem. Extensive evaluations on real-world data demonstrated
the superior performance of DyLand over existing spatio-
temporal GNNs and static manifold methods. In our future
work, we will attempt to extend DyLand by incorporating
meteorological data and meta-learning.
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