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a b s t r a c t

Forecasting incoming water demand is a critical step in efficient reservoir management and rev-
enue optimization in large-scale cascade hydropower stations. It depends on multiple factors, such
as weather conditions, grid dispatch, and electricity demand, and, in turn, facilitates a range of
downstream decision-making, from natural hazards control and water ecology protection to power
generation plans. Current efforts mainly rely on methodologies from statistical machine learning
or deep neural networks to model the hydrological patterns from historical time series for inflow
forecasting. However, existing models are restricted by short-term temporal dependencies and are
prone to error accumulation issues due to the underlying autoregressive architecture. Meanwhile,
most recent self-attention time-series models fail to achieve real-time inflow forecasting because
of tremendous parameters and computational bottlenecks on learning long time series with fine
granularity. We propose a novel framework, called DTODE (Dynamic Transformer Ordinary Differential
Equations), for capturing nonlinear and non-stationary evolving patterns inherent in hydrological time
series. Specifically, we present the dynamic self-attention mechanism combining transformer and
ordinary differential equations that simultaneously captures long-range dependencies of observations
from a dynamic system perspective. DTODE exploits a continuum of self-attention layers (instead
of discrete counterparts) to learn the dynamics of multivariate time series while paying attention
to the co-evolving time-related factors. Besides, our model is flexible in inferring the complex
states at any time step, allowing us to forecast inflows at multiple time horizons. Comprehensive
evaluations on real-world datasets show that DTODE significantly reduces forecasting errors compared
to state-of-the-art inflow prediction systems.

© 2023 Elsevier B.V. All rights reserved.
r

1. Introduction

Hydroelectric power, also called hydroelectric energy or hy-
roelectricity, harnesses the kinetic energy of flowing water and/o
aterfalls to spin the blades of a turbine which, in turn, spins
otor of the electricity generator. It is the largest producer of
enewable energy in the world, catering to global decarboniza-
ion goals, while complementing variable renewables through its
lexibility and storage.2 Hydropower stations usually build dams
o control the flow of water in the reservoirs – i.e., combining the
toring and releasing of the water for (future) electricity gener-
tion [1]. Such reservoirs, especially the ones for large-scale hy-
ropower stations, in addition to hydropower generation [2] also
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play crucial roles in water resources management enabling water
supply, flood/drought alert, dam portfolios planning, agricultural
and irrigation management, as well as landslide prevention [3–8].

Conventionally, reservoirs are operated based on the knowl-
edge of experts who usually design mathematical/physical
models to simulate the dynamics of inflow/outflow. For exam-
ple, earlier works [9–11] design time-based rules, based upon
which the operation of the reservoir system can be simulated
and configured for making optimal policies. However, predefined
rule-based models cannot handle sudden events (e.g., flood and
dam break), which limits their applicability in real-time reservoir
operation.

Effective real-time reservoir operation is a non-trivial task
due to variability in natural phenomena that increase water lev-
els (e.g., precipitation and snowmelt) and other factors such as
climate and water-use changes. More importantly, reservoir op-
eration usually confronts conflicting, if not even contradictory,
optimization goals. For example, excess water in summer should
have been stored for future hydropower generation. Still, the
storage capacity needs to be maintained at a certain (lower)
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evel to tolerate the possible flood peaks. Water discharge may
lso result in a significant loss of electricity revenue, which may
e considerably ameliorated if an accurate and reliable inflow
orecast can be made in advance [12]. For example, an opti-
ization of hydroelectric systems using the knowledge of inflow
nd water discharge based on linear dynamic programs to solve
he partially observable Markov decision processes (MDP) was
roposed in [13].
In recent years, machine learning methods have been widely

dapted to fit complex hydrological time series data. The family
f AutoRegressive Integrated Moving Average (ARIMA) models is
he first attempt to exploit hydrological time series [14]. In addi-
ion, Bayesian networks and K-means clustering were applied for
redicting different horizons (e.g., daily or monthly) of water in-
low [15]. Other time series learning models such as support vec-
or regression and artificial neural networks (ANN) have also been
idely used for modeling nonlinear and nonstationary character-

stics of hydrological data [16–18]. These approaches model either
nivariate water data or short-term observations, and therefore
ay not capture the complex dependencies among multivariate

ime series [19] and the nonlinear interactions between different
ausal factors.
The rapid developments of deep learning techniques have

otivated a range of applications in reservoir inflow forecast-
ng [20–22], primarily due to its ability in automatic feature
xtraction and nonlinear dependency learning. In the literature,
ecurrent neural network (RNN) and its well-known variants,
uch as LSTM [23] and GRU [24], become popular in model-
ng hydrological time series dependencies [25–27]. Despite the
ncouraging results compared to traditional statistical and ma-
hine learning approaches, RNN-based models are still limited
o learning short-term temporal dependencies because of the
xploding or vanishing gradient issues in training RNNs with
ong-term observations. Besides, the sequential output of RNN
ells prevents its application in real-time training and forecasting
f the large-scale hydrological time series data.
Recently, the Transformer models based on the self-attention

echanism [28] have demonstrated better performance than
NNs in capturing long-range dependency, and have attained
tate-of-the-art results in a range of sequential learning tasks,
uch as machine translation [29] and audio/speech processing [30]
ransformers rely on the multi-head attention mechanism to
ocus on the information from different positions, rendering them
articularly suitable for learning time series data. Unfortunately,
irectly applying canonical Transformers to long-range sequences
s computationally prohibitive because its space and time com-
lexities grow quadratically with the sequence length. In ad-
ition, real-world time series data are often composed of both
ong- and short-term periodic patterns, which are difficult to
apture by the vanilla Transformer. To address these issues while
xtending self-attention to time series forecasting, several vari-
nts of Transformers have been proposed to capture intricate
emporal dependencies and improve forecasting performance. For
xample, LogSparse Transformer [31] first validates Transformer’s
apability in handling long-range dependencies and employs
ausal convolutions to produce queries and keys in the self-
ttention layer. Adversarial sparse Transformer [32] introduces
generator to learn a sparse attention map for time series and
esigns a discriminator to improve the prediction performance.
nformer [33] enhances the prediction capacity of Transformers
n long-term time series forecasting by improving self-attention
ith a distilling operation.
Despite the encouraging results made by the aforementioned

orks, prior self-attention-based models can hardly be directly
pplied for real-time inflow forecasting due to the large-scale
arameters in the neural networks. In addition, previous en-
eavors did not exhibit good performance when modeling the
2

irregular time series for multi-horizon inflow forecasting. This,
however, is of particular interest for critical decision-making
in operating hydropower stations, e.g., persistently optimizing
long-term reservoir operation strategies such as aquatic ecosys-
tem protection and hydroelectricity revenue maximization. Fur-
thermore, intelligent inflow forecast systems refer to a set of
continuous-time series such as water discharge, precipitation,
and temperature. As a complementary observation, both RNNs
and Transformers consider the continuous dynamic systems with
discrete-time network layers, which may not meet the com-
plex requirements of control systems such as reservoir operation,
where high-frequency feedback is necessary to maintain system
flexibility and stability.

In this paper, we propose Dynamic Transformer ODEs (DTODE)
to tackle the aforementioned limitations and solve the multi-
horizon inflow forecasting problem. DTODE is a novel inflow
forecasting method exploiting the underlying connections be-
tween Transformer and ODEs while forecasting the multi-horizon
inflow adaptively. DTODE is also an intelligent inflow forecast-
ing system that is specifically designed for large-scale reser-
voirs of hydropower stations. It provides an alternative view of
dam operation by modeling the statistical dependency among
multivariate time series rather than the mutually independent
evolution of individual sequential observations. Specifically: (1)
introduce an efficient embedding method with a convolutional
operation to capture the interactive relationship between differ-
ent kinds of observations; (2) present a dynamic self-attention
mechanism to capture the long-term temporal dependencies be-
tween the time-evolving monitoring data. It enriches the model
with stacked attention layers with neural ODEs, enabling com-
putational efficiency and fast convergence with limited memory
cost for real-time inflow forecast; (3) design an evolving module
for multi-horizon forecasting, which takes advantage of sequen-
tial factors for making predictions instead of forced temporal
alignment and iterative forecasting in previous models. To our
knowledge, DTODE is the first work bridging the gap between
self-attention neural networks and neural ODEs while evolving
dynamic systems with the attention mechanism.

In summary, the main contributions of this work are three-
fold:

• We propose a novel dynamic Transformer-based time-series
model for water flow forecasting. It explicitly accounts for
the locality and temporal features on the premise of captur-
ing sequential dependencies. Moreover, our method lever-
aging ODE can capture complex time-series patterns
efficiently and provides a dynamic perspective of modeling
continuous time series.
• We introduce ODE extrapolations and aggregate sliding

sequential factors for modeling the evolution of each fore-
casting horizon, which extrapolates the latent represen-
tation at any time step. This design allows us to make
multi-horizon predictions without forcing temporal align-
ment and iterative occupation that may lead to significant
error accumulation in traditional forecasting models.
• We conduct extensive experiments on real-world datasets

collected from three large-scale reservoirs. Comprehensive
evaluations demonstrate the superiority of our method,
which not only improves the long- and short-term predic-
tion accuracy but also provides the multi-horizon forecast
results and the interpretations of the model behaviors.

We note that in our earlier work [34], we introduced an ODE-
based model called FlowODE which employs neural ODE to model
the multivariate hydrological data and forecast the future inflow
of the reservoirs. Its main idea is to deal with multivariate flow
time series in a continuous dynamic manner, by extending the
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iscrete state transitions in RNNs to continuous transformations.
n this work, we present a substantially enhanced version of [34]
ith several new characteristics:
(1) We propose a novel methodology for modeling long hy-

rological time series by exploiting the connections between self-
ttention networks and numerical methods of ODEs. The DTODE
odel proposed in this work incorporates the numerical methods
f ODEs into Transformer in a systematic manner and abandons
he RNN structure completely. In contrast, FlowODE [34] is a typ-
cal RNN-based model that is still constrained by the sequential
raining problem.

(2) We present a consistent framework to combine multi-
ariate time series and include external factors, considering the
eterogeneous data as a whole rather than concatenating differ-
nt representations as in FlowODE. This new design allows the
odel to better capture the complex interactions between differ-
nt factors while alleviating the potential underfitting problem
ue to the simple representation.
(3) We introduce new datasets and conduct more comprehen-

ive evaluations to verify the effectiveness of the newly proposed
TODE model.
The remainder of this paper is organized as follows. We review

he related work in Section 2 and position our work in that
ontext. Formal definitions and the necessary background are
ntroduced in Section 3. The details of the proposed methodology
re presented in Section 4, followed by comprehensive exper-
mental evaluations in Section 5. We conclude the paper and
utline directions of our future works in Section 6.

. Related work

In this section, we review the related literature from three
erspectives, i.e., Inflow Forecasting, Self-attention Mechanisms,
nd Neural Ordinary Differential Equations, and position our work
n that context.

.1. Inflow forecasting

An efficient reservoir inflow forecast is essential for making
ppropriate water-regulating decisions that could impact flood
ontrol, irrigation, drought prevention, and dam operation from
oth efficiency and safety perspectives [8,20]. However, accurate
nflow prediction is a non-trivial task. It is affected by many
actors, including (but not limited to) rainfall, climate, soil condi-
ions, snow amounts, and the operations of upstream reservoirs.
n the past few decades, inflow forecast has received increased
ttention from both academia and industry due to its importance
or economic development and other societal benefits [35,36].

Earlier efforts typically relied on linear statistical methods
o model the hydrological time series and forecast the future
nflow. For example, the autoregressive integrated moving av-
rage (ARIMA) and its many variants have been widely utilized
o model the multivariate hydrological time series representing
he water flow [14,37,38]. However, those methods can only
apture linear dependency and feature interactions and are not
traightforwardly generalizable to large-scale reservoirs with a
onsiderable amount of historical data. To model the nonlin-
ar and non-stationary features of hydrological data, subsequent
tudies have leveraged data-driven methods for modeling and
redicting the future inflow. For example, a support vector re-
ression (SVR) to predict the discharges of monthly river flow
as used in [39]. Bayesian networks have also been utilized
o evaluate the stochasticity inherent in water time series and
redict the inflow while considering the uncertainties [15,40].
ther machine learning techniques such as fuzzy inference and

nsemble learning have also been used for inflow forecast [41,42].

3

In recent years, there appears some research combining more
than one machine learning model that takes more factors into
consideration and improves the forecastings [43]. Weighted Vot-
ing Regressor has been used as a common technique for merging
machine learning models in hydrology applications for better pre-
dictions [44,45]. These models rely on typical machine learning
approaches to learn the patterns of hydrological data and achieve
promising results in water flow prediction. However, the non-
linear dependency and complex interactions among multivariate
time series are usually ignored due to the limitations of the
underlying linear learning models.

Recently, the advances in deep neural networks have inspired
a number of studies using deep autoregressive models such as
recurrent neural networks (RNN) for time series forecasting [46].
For example, an RNN autoencoder framework to capture the long-
term dependence between multivariate time series and forecast
the flood of the river in a multi-step-ahead way was proposed
in [26]. The similar recurrent unit has also been used in flood
forecasting in urban reservoir [47]. Besides, [21] employed RNN
models for the monthly streamflow of the Yangtze River to im-
prove accuracy and stability. [48] proposed a GRU-based model
to decompose the original runoff series for mid-term runoff fore-
casting. Recent empirical studies [22,27] have compared var-
ious deep learning models and demonstrated that LSTM [23]
– a typical RNN model – significantly outperforms other ma-
chine learning models such as ARIMA and SVR. Nevertheless,
the performance of RNNs models, including LSTM and GRU [24],
is constrained by highly long sequence time series data due
to exploding or vanishing gradients of RNNs, which strains the
model’s prediction capacity. Besides, RNNs are autoregressive
models relying on the output of previous steps and thus cannot
be trained in parallel.

2.2. Self-attention mechanisms

The self-attention mechanism and its encoder–decoder archi-
tecture Transformer [28] have spurred extensive attention due
to the impressive performance in a wide range of applications,
such as language translation [49], speech recognition [50], and
image generation [51]. Compared with traditional deep sequences
processing models such as RNN and its variants, the Transformer
network has several significant advantages. Firstly, it is a parallel-
in-time architecture that allows for parallel training while avoid-
ing recurrent computation. Secondly, it considers the sequence as
a whole, enabling the model to capture the global long-distance
dependency. Lastly, it addresses the gradient vanishing issue in
the long sequences.

Various Transformer architectures have also been used for
time-series processing. For example, in [52] a Transformer with
deep layers was applied to influenza-like illness forecasting, whose
performance is comparable to the state-of-the-art deep recur-
rent models. Hierarchical Transformer-based learning [53,54] ap-
proaches were proposed for financial time series forecasting
tasks and achieved considerable improvement over previous deep
learning models. Except for forecasting, Transformer-based meth-
ods also show their advantages on other time series modeling
tasks such as classification [55], anomaly detection [56,57] and
institution [58]. Moreover, a few attempts have combined Trans-
former with other popular deep architectures. For instance, the
generative adversarial network (GAN) has been introduced in
Transformer for time-series forecasting [32,59], which learns a
sparse attention map for time series and regularizes the model
with a discriminator for improving the prediction performance.
Graph neural network (GNN) has been included in Transformer
for spatial relations modeling in multivariate time series [60,61].
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As for the Transformer itself, efforts were made to adapt
the characteristic of different time series data such as enhanc-
ing the locality with a convolutional operation and breaking
the memory bottleneck by proposing the LogSparse Transformer
that requires fewer dot products in each attention layer [31]. A
Transformer-based model called Informer to enhance the pre-
diction capacity for long sequence time series forecasting was
proposed in [33], which is a time-efficient model capturing long-
range dependency between the outputs and inputs of the time
series. Autoformer [62] is a decomposition architecture that pro-
gressively separates the long-term trend from the immediate
latent variables, enabling the model to discover the similarity and
periodicity of time series. FEDformer [63] introduces a decompo-
sition module to capture the global profile of time series while
employing Transformers to capture more detailed parts. Non-
stationary Transformer [64] proposes Stationarization and De-
stationary Attention mechanisms to avoid degenerating terribly
on non-stationary real-world data.

Existing Transformer-based models have essentially improved
both accuracy and efficiency of time-series forecasting. However,
some drawbacks still exist when utilizing the Transformer for
time-series forecasting. On the one hand, the self-attention mech-
anism has advantages in discovering long-term, but it still cannot
highlight the significant correlations between adjacent time steps
due to the discrete nature of the underlying neural networks. On
the other hand, the representation learned by a single attention
layer is limited since the multiple superimposed layers carry lots
of parameters, making the model too large and too complex to fit
the time series data.

2.3. Neural ordinary differential equations

Pioneering studies have found the intrinsic connections be-
tween neural networks (e.g., CNNs and RNNs) and dynamical
systems [65–67]. For instance, [68] bridged the gap between the
deep CNN such as ResNets [69] and the ordinary differential equa-
tions (ODEs), and demonstrated that CNNs could be interpreted
as an Euler discretization step of an ODE. Simultaneously, ODE is
used to alleviate the gradient vanishing problem in RNNs [67].
In the seminal work NODE [70], the discrete hidden states of
neural networks are approximated with the ODE solver, and the
adjoint method is introduced to compute the gradients, which es-
sentially saves the memory cost in training the neural networks.
Similarly, a stable numerical ODE solution into RNN architecture
was introduced in [67], aiming to capture the long-term depen-
dencies of the input sequences. More recently, several studies
have been conducted to improve the neural ODE methods — for
example: injecting noise to regularize the neural stochastic ODE
networks [71], combining Conditional Latent RNN (CL0RNN) with
ODE solver [72], augmenting neural ODE for more expressive and
stable function approximation [73], and correcting the inaccurate
gradient problem [74,75]. Neural ODEs have also been applied to
solve continuous dynamics in time series. [76] proposed a ODE-
RNN model to model irregularly-sampled time series and [77]
designed a stabilized ODE structure for long-term forecasting.
As we will demonstrate in the rest of the paper, our proposed
DTODE model, in which we rely on a novel Transformer and
ODE extrapolation and aggregation (while eliminating the RNN),
outperforms the existing models for inflow prediction.

3. Preliminaries

We now proceed with formally defining the problem studied
in this paper and provide the necessary background on neural
ODEs and Transformers.
4

Table 1
Notations.
Symbol Description

X The multi-variable time series of observations
Z The multi-variable sequential factors
Y The predictive time series of inflows
N The number of observation types in time series
M The number of sequential factors
T The length of historical time series
τ The temporal horizons ahead to be predicted
B The mini-batch of a time-series dataset
L The loss in training process
θ, Θ Learnable parameters of sub-modules and the overall model
EX, EZ The embedding of time series and sequential factors
Sm The sinusoidal matrix of mth sequential factor
W, b The weights and bias parameters
Q,K,V The Query, Key, and Value of the self-attention mechanism
C(·) Self-attention calculation
H Hidden states between input and output of the attention layer
He,Hd Hidden states after encoder and decoder
L The number of layers of dynamic self-attention solver
G(l,H) The attention ODE block with initial state H in layer interval l
f (t,H) The dense ODE block with initial state H in time interval t

3.1. Problem definition

In inflow water forecasting tasks, we consider observations of
N related multivariate time series X1:T = {x1, . . . , xt , . . . , xT },
where t is the time index, T is the length of historical time
series, and each xi includes N scalars representing N related
bservations (e.g., inflows, temperature, and precipitation) at the
ame time instant. Furthermore, we take the sequential factors
e.g., day-of-the-month and hour-of-the-day) into consideration,
nd use Z1:T+τ = {z1, . . . , zT , . . . , zT+τ } denote them, where each
i includes M features. Our goal is to predict the value of inflows
n the next τ time steps, i.e., XInflow

T+1:T+τ = {x
Inflow
T+1 , . . . , xInflowT+τ }. To

this end, we are going to model the following function:

Y = XInflow
T+1:T+τ = F(X1:T , Z1:T+τ ;Θ) , (1)

where τ is a hyperparameter representing the horizon of fore-
casting (which is usually set to 1 h, 1 day, or 1 week), and Θ

denotes all the parameters in the model. Table 1 summarizes the
notations frequently used throughout this paper.

3.2. Transformer

Transformer [28] is an encoder–decoder model with a multi-
head self-attention mechanism that has been widely employed
for global long-term temporal dependency learning. Here we
briefly introduce the basic architecture of the Transformer and
refer readers to [28] for more details. Generally, both the en-
coder and the decoder networks stack identical layers, each of
which consists of an attention occupation and a feed-forward
network (FFN). The processing of the encoder can be described as
follows:
Q = WQH+ bQ,

K = WKH+ bK,
(2)

C(Q,K,V) = FFN(softmax(QKT/
√
dm)× V) , (3)

Output = C L(C L−1(· · · C1(H))) , (4)

where Q,K,V are called query, key, and value matrices, respec-
tively; dm is the dimension of the H; L is the number of layers;
C i is the ith transition layer of the encoder; and W and b are
learnable parameters. This structure is especially suitable for cap-
turing correlations and discovering the patterns in sequences, and
forming an effective latent representations [31,33,78] – mainly
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Fig. 1. Overview DTODE and its three major components: (1) convolutional sequence embedding; (2) dynamic self-attention solver; and (3) multi-horizon inflow
xtrapolation.
ecause of its ability to access any part of the historical obser-
ations, regardless of the distance. However, the representations
xtracted from shallow layers are limited, while deep-layer stack-
ng may result in large-scale parameters, making the convergence
f the model hard to achieve.

.3. Neural ODE

In regular neural networks, states are transformed by a se-
ies of discrete transformations: ht+1 = f (ht ), where ht is the
tate at time t and f can be any fully connected, convolutional
r recurrent layer. However, these models have difficulty when
escribing the events happening at continuous and irregular in-
ervals. In such situations, Neural ODEs (NODE) [70] – a kind of
quations with learned parameters – are preferred for describing
lenty of dynamical systems, as follows:
dh(t)
dt
= g(t,h(t); θg ) , (5)

h(t1) = h(t0)+
∫ t1

t0

g(t ′,h(t ′); θg )dt ′ , (6)

where h(t) is the hidden state at time t; t0 and t1 denote the
initial and final time of the process; g is the derivative function
of h(t) with respect to t; and θg is the appropriate parameters of
g .

NODE considers the infinite-steps hidden state update in neu-
ral networks to replace the discrete sequence of hidden state
transformation. It solves the initial value problem with con-
tinuous transform and can compute the constant dynamics of
hidden states h via ODEs. Regarding the infinite hidden state
update process of the neural ODE block as solving ODEs with
numerical methods (such as Euler, Runge–Kutta, and adjoint
method [79]) allows obtaining the hidden states h(t) at any
desired moment [70]. In the pioneering study [70], the authors
propose to use an adjoint method to simulate a dynamical system.
However, the dynamics of either the hidden state or the adjoint
might be unstable due to numerical instability of backward ODE
solve [73,74].

This work uses a neural network module to approximate g
since the analytical solution is generally unsolvable (possibly
even nonexistent). From the formulae, we can obtain continuous
states at the posterior time by calculating the initial state h(t0)
and fitted parameters θ of g .
g

5

4. Methodologies

We now present the details of our methodology for hydrolog-
ical time series modeling and reservoir inflow forecasting.

4.1. Overview of DTODE

Fig. 1 illustrates the architecture of the DTODE framework,
which is composed of three main parts:

• Time series and sequential factor embedding – performs
a 1-D causal convolution to extract meaningful represen-
tations of low-dimensional hydrological time series while
enhancing local patterns and encoding the external factors
such as temperature, rainfall, and power generation (see
Fig. 2).
• Dynamic self-attention solver – exploits neural ODEs to

learn the hidden states of self-attention blocks as a con-
tinuous dynamical system. It simultaneously captures long-
range dependencies in time-series data and computes the
query and key vectors for multi-head attention in a
parameter-efficient way.
• Multi-horizon inflow extrapolation – extrapolates the

learned latent variables that generalize the representations
in previous steps to infer the latent variables at any time
step, enabling our model to predict the future inflow at any
scale.

4.2. Time series and sequential factor embedding

In general, there are two different kinds of hydrological data
in a typical hydropower station: (1) Multivariate time series data
consists of the continuous historical records spanning a long
period of time, including the water inflow, temperature, rainfall,
etc. (2) Other time-related categorical factors, e.g., the season, the
month, and the hour in a day, which may provide external signals
of the changes in the water inflow. Since the water inflow has dis-
tinct seasonal patterns, the time signals are essential features for
reservoir inflow forecasting. To efficiently capture these features,
we use two different schemes to embed the data for downstream
learning. Specifically, we use a 1-D causal convolution network to
embed the multivariate temporal sequences and encode the local
context of hydrological time series. In addition, the categorical
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Fig. 2. Illustration of the casual convolution and sequential factors encoding.

time-related features are embedded with a position embedding
technique, which allows the model to scrutinize the sequential
patterns evolved with time.

4.2.1. Time series embedding with causal convolution
The significant variability in hydrological time series is due to

arious reasons, such as heavy rains, floods, and drainage of the
pstream dam. Therefore, the trend of reservoir inflow should
e accurately captured in the embedding space. However, the
bservation at a particular time instant/step is highly determined
y the values at adjacent time steps, which can also be leveraged
o identify whether an observation is a regular or change point.
n traditional time series models such as ARIMA and RNNs, the
equential context is modeled by the conditional probability of
revious observations. In contrast, in the typical Transformer,
he sequential context is computed by the similarities between
ueries and keys based on their dot product values — which
ay not reflect the trends of inflow such as anomalies caused by
xtreme weather. Meanwhile, the query-key matching agnostic
f local context may confuse the self-attention computation and
ause optimization issues [31].
To extract more meaningful representations of hydrological

ime series, we design a 1-Dimension causal convolution layer to
apture the local patterns and interactions between different time
eries. Specifically, we exploit a causal convolution on N channels,
orresponding to observations represented by N different time
eries, to transform the original time series (with padding 1s) into
ow-dimensional embeddings EX ∈ RN×dm as:

X = Conv1d(X1:T ; θc)⊺, (7)

where θc denotes learned weights in the convolutional kernel (we
set the kernel size as 3, the stride step as 1 and the out channel
as dm).

Through the above causal convolution, the generated embed-
ding EX can be more aware of the local sequential patterns and
the abnormal observations. In addition, it would allow us to
compute the similarities between an observation and its sur-
rounding context, e.g., the output has paid adequate attention to
multivariate observations between adjacent 3 time steps, which is
beneficial for downstream dependency learning and forecasting.

4.2.2. Embedding of sequential factors
Time-related features are essential for sequence processing,

as they enable the model to be more discerning of the temporal
characteristic of data evolution over time. Since these features are
categorical, we need a method to encode this information while
retaining the awareness of the time throughout the evolution. To
this end, we borrow the idea of position encoding in self-attention
models to embed the sequential factors.

The canonical Transformer [28] records the index of words
in a sentence and uses the sinusoidal functions to compute the
position embedding, which indeed improves the performance in
6

many NLP tasks. In our hydrological time series data, patterns
that evolve with time are greatly affected by seasonal features,
due to, for example, natural and man-made events. For instance,
the inflow of the reservoir in summer is significantly more than
in winter, and the upstream discharge water would also notably
increase the inflow. We note, however, that traditional position
embedding only considers the fixed index but ignores the se-
quential factors. To address this issue, we take the sequential
factors Z1:T+τ into account by first generating a matrix related
to each sequential factor with the sinusoidal function (due to its
computational efficiency). The calculation of the mth sequential
factor Smi,j is defined as follows:

Smi,j =
{
sin (i× c j/dm ) if j is even,
cos (i× c j/dm ) if j is odd,

(8)

i ∈ {0, 1, . . . , χm
}, j ∈ {0, 1, . . . , dm}

where i and j respectively denote the ith row and jth column
of the matrix, c = 0.0001 is a constant (following standard
positional embedding [28]), and χm is the maximum value of
the sequential factor, e.g., χm

= 24 when the factor denotes the
hour-of-the-day. Then, we establish an embedding layer and treat
the sinusoidal matrix as its initial weights. The embeddings EZ
of the sequential factors can be obtained by concatenating the
individual features:

EZ =

M∑
m=1

Wm
· Zm, (9)

where Zm means the embedding of the mth feature and Wm

denotes the corresponding learnable parameters with initial value
Sm.

4.3. Dynamic self-attention solver

Now we introduce our dynamic self-attention solver that cou-
ples the neural ODE to adapt any discrete Transformer architec-
tures into continuous dynamic systems, as illustrated in Fig. 3.

In a typical Transformer [28] and its many variants for time
series data learning [31,33,78,80,81], both the encoder and the
decoder are fed with the embedding of time series, while the
decoder additionally takes the hidden states He outputted by the
encoder as input. However, a single self-attention layer may not
fully capture the complex sequential dependencies and mean-
ingful time series patterns. Therefore, existing Transformer-based
time series models have to stack more layers, requiring signif-
icantly more parameters. This may lead to parameter redun-
dancy while making the training process unstable and the model
difficult to converge.

To address this issue, we introduce neural ODE to the self-
attention layers of both the encoder and the decoder. Generally,
each step of the ODE solver handles the data at a specific time
index t ∈ T when modeling the time series. Unlike this, we treat
the hidden states H of the input and output of each attention layer
as the input and output of the corresponding ODE solver’s step. In
other words, there is a bijective mapping between the attention
layer and the continuous ODE solver. Our dynamic self-attention
solver only requires the same parameters as a single attention
layer. The depth of the model can be seen as a variable, which is
more flexible than previous deep Transformer models.

In each step of the attention ODE solver, there are three
main phases: (1) First, we add the constant sequential factors
embedding to the output of the previous step, making each step
has the same perception of sequential factors and positional
information. (2) Next, we apply a typical attention mechanism
with dot product, enabling the model to pay attention to the
critical information and capture long-term dependencies. In this



X. Xu, Z. Wang, F. Zhou et al. Knowledge-Based Systems 276 (2023) 110737

w
b
a
e
H
b
f

w

f
A

O

e

i

4

w
i
t
i
m
a
m
f
h
a

i
a
g
w
S
f

H

w
s
b
c
c
t

E

Fig. 3. Illustration of the multiple-layer dynamic self-attention via ODE solver.

ay, the generated hidden states contain temporal patterns of
oth hydrological time series and sequential features. (3) Finally,
fully connected layer and a GeLU activation function [82] are
mployed to perform the non-linear transformations. Suppose
l is the hidden state of the lth step, the transition procedure
etween two steps of the dynamic self-attention solver can be
ormally described as follows:
d(H(l))

dl
= G(l,H(l)+ EZ; θG) , (10)

H(l+ 1) = Norm(H(l)+∫ l+1

l
G(l′,H(l′)+ EZ; θG) dl′), 0 ≤ l < L ,

(11)

here H(0) equals to the input embedding EX, G is an attention
block with parameters θG, Norm denotes normalization layer, and
L is a hyperparameter representing the number of layers.

To calculate the integration term in Eq. (11), we employ the
fourth-order Runge–Kutta method [79] since it has higher pre-
cision than the simple Euler method. The calculation can be
described as:
G1 = G(l,H(l)+ EZ) ,

G2 = G(l+ 1/2,H(l)+ G1/2+ EZ) ,

G3 = G(l+ 1/2,H(l)+ G2/2+ EZ) ,

G4 = G(l+ 1,H(l)+ G3 + EZ) ,

(12)

∫ l+1

l
G(l′,H(l′)+ EZ; θG) dl′

=
1
6
(G1 + 2G2 + 2G3 + G4) , (13)

where G1,G2, G3 and G4 denote the derivative at the beginning,
midpoint, and end of the interval. In this way, we approximate
the integration with multi-step discrete processes.
Algorithm 1: Dynamic self-attention solver in the encoder.
Input:
The embedding of time series EX1:T and corresponding
sequential factors EZ1:T .
The number of layers L.

Output: The hidden states after the encoder He.
Initialize: H0 ← EX1:T
Iterative transition in self-attention block of each layer:
foreach i in [1, ..., L] do

H← Hi−1 + EZ1:T
Q← WQH+ bQ, K← WKH+ bK, V← WVH+ bV
G(l,H) =
FFN(H+ self-attention(Q,K,V))+ self-attention(Q,K,V)
Calculate Hi via Eq. (11), (12) and (13)
Hi ← Norm(Hi)

end for
Output hidden states: He ← HL

The procedures of the proposed dynamic self-attention solver
or the encoder and decoder are outlined in Algorithm 1 and
lgorithm 2, respectively. In the encoder network, the original
7

Algorithm 2: Dynamic self-attention solver in the decoder.
Input:

The embedding of masked time series EX1:T+τ
and the

sequential factors EZ1:T+τ
.

The hidden states outputted by encoder He.
The number of layers L.
utput: The hidden states after the decoder Hd.
Initialize: H0 ← EX1:T+τ

Iterative transition in self-attention block of each layer:
foreach i in [1, ..., L] do

H← Hi−1 + EZ1:T+τ

Q1 ← WQ1H+ bQ1 , K1 ← WK1H+ bK1 , V1 ← WV1H+ bV1
P← H+ self-attention(Q1,K1,V1)
Q2 ← WQ2He + bQ2 , K2 ← WK2P+ bK2 , V2 ← WV2P+ bV2
G(l,H) = FFN(P+ cross-attention(Q2,K2,V2))+
cross-attention(Q2,K2,V2)
Calculate Hi via Eq. (11), (12) and (13)
Hi ← Norm(Hi)

end for
Output hidden states: Hd ← Hi

input is the embedding of historical time series before employing
the self-attention mechanism. In the decoder, the input is the
output of the encoder He and the embedding of masked target
time series (i.e., zeros instead of real future values) to ensure
that the current position would not access the future information.
We observe that Q, K, andV are respectively the affine of input
mbeddings in self-attention of encoder and decoder, i.e., Q is the

affine of He, K and V are same with the setting of self-attention
n the cross-attention of the decoder.

.4. Multi-horizon inflow extrapolation

Previous RNN- and Transformer-based models usually perform
ell on observations over fixed intervals, but may fail to model

rregular samplings. That is, once the training process finishes,
he forecasting time steps and intervals are fixed. Besides, exist-
ng models rely on the performance of iterative predictions for
ulti-horizon prediction, which are limited to error accumulation
t previous steps. As an example, in the current Transformer
odels [31,33,78,80,81] the long-term results have been decoded

rom the latent representation. Nevertheless, if the forecasting
orizon is different from the input sequence length, these models
re easily prone to inaccurate predictions.
In the real dam operation, we would like to model flex-

ble sampling intervals, learn the multi-horizon dependencies,
nd forecast the future inflow at different scales. Towards this
oal, we design another ODE solver with a variable related to τ ,
hich can effectively solve multi-horizon forecasting problems.
pecifically, we reformulate the time series evolving process as
ollows:

T+t = HT +

∫ T+t

T
f (t ′,HT+

EZt+1:T+t ; θf )dt
′ , t ∈ {1, 2, . . . , τ − 1} (14)

here f is a dense block, HT equals to the output of the attention
olver in the decoder Hd, EZt+1:T+t is the sequential factors em-
edding of Zt+1:T+t , and θf denotes learned parameters of f . By
onsidering the evolution of the hydrological time series with a
ontinuous dynamic system, we endow the model with the ability
o fit and extrapolate the future inflow.

Here we also employ the Runge–Kutta method, similar to
q. (12) and (13), for solving this equation. During the process,
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he previous latent states evolve with posterior sequential factors
mbedding in the ODE solver, and we can get the latent represen-
ations from time T to T + τ − 1. More importantly, it allows us
o arbitrarily change the size of τ (i.e., the horizons) even though
he model training has been accomplished since the parameters
f are shared in the ODE function and the time series evolution
s considered as a continuous dynamic system in our method.

.5. Inflow forecasting & model training

By now, we have obtained the expressive representations of
ime series from time T + 1 to T + τ , which sufficiently reflects
he sequential reliance and correlations between different kinds
f observations. Therefore, we use a multi-layer perceptron to
ransform the representations to the inflow forecasting at time
+ τ as follows:

= XInflow
T+1:T+τ

= MLP({HT ,HT+1, . . . ,HT+τ−1}; θm) , (15)

here MLP is the multi-layer perceptron and θ denotes learned
arameters.
We train our DTODE model with stochastic gradient descent

SGD) using Adam optimizer [83], and we choose the mean
quared error (MSE) loss function as our optimization objective.
iven a batch of the time series data B, we update all parameters
y minimizing the loss given by:

= −
1

|B| × τ

B∑
i=1

T+τ∑
t=T+1

(ŷi,t − yi,t )2 , (16)

here yi,t and ŷi,t denote the target and prediction inflow of the
th sample at time t . During training, the loss is back-propagated
rom the decoder’s outputs across the entire model. The whole
raining procedure of our DTODE is summarized in Algorithm 3.
Algorithm 3: The training procedure of DTODE.
Input:
The sequential factors Z1:T+τ and masked time series
embedding X1:T+τ .
utput: The inflow forecasting XInflow

T+1,T+τ .
Initialize all parameters Θ of DTODE
while not converged do

Obtain the input embedding EZ and EX via Eq. (7) and
Eq. (9).
Compute He by Algorithm 1.
Compute Hd conditioned on He by Algorithm 2.
Evolve Hd and obtain HT :T+τ−1 via Eq. (14)
Predict the future inflows XInflow

T+1,T+τ via Eq. (15)
Update Θ by minimizing the objective in Eq. (16)

end while

4.6. Complexity analysis

There are three main components in DTODE, i.e., data embed-
ing, dynamic self-attention solver, and multi-horizon evolution.
ata embedding transforms original sequential data into rep-
esentations through causal convolution and sequential factor
apping. The time complexity of 1-D convolution is O(TNdm).

Also, the complexity of sinusoidal computation is linear with a
constant related precision, requiring total T × dm ×

∑M
m=1 χm

alculations. Thus, the complexity of sequential factor mapping is
(TMdm) and that of data embedding is O (T (M + N)dm). For the
ynamic self-attention solver, there are L layers and P steps be-
ween adjacent layers. The representation feeds forward in each
tep via an attention block. Hence the complexity is linear with
hat of the attention block, i.e., O(T 2dm). For the third part, we
hoose the dense layer as the block of multi-horizon evolution,
hich has a computational complexity linear with O(τd2 ).
m

8

Fig. 4. Illustration of the studied areas. Three research stations (i.e., Pubugou,
Shenxigou, Danba) distributed along Dadu River have been marked red.

5. Evaluations

In this section, we report the findings of our experiments
conducted to evaluate our DTODE by comparing its performance
with state-of-the-art inflow forecasting and time-series model-
ing methods on three real-world datasets. Specifically, we aim
to address the following research (RQ) questions via extensive
experiments:

• RQ1: How does DTODE perform when compared to existing
time series forecasting models, especially recent ODE-based
and Transformer-based methods?
• RQ2: How do the critical model components affect the per-

formance of DTODE?
• RQ3: Can DTODE provide interpretable representation learn-

ing for inflow forecasting?

5.1. Experimental settings

We now describe in detail the settings of our experiments.

5.1.1. Datasets
We conduct experiments on three real-world datasets col-

lected from two large-scale hydropower plants and a hydrometric
station, as marked in Fig. 4. The three datasets are:

• PBG: Pubugou is an artificial dam corresponding to the
largest hydropower station along the Dadu River. It houses
a hydroelectric power station with 6 × 600 MW generators
for a total installed capacity of 3,600 MW. For the reservoir
of PBG, the normal storage level is 850 m, with 5.39 billion
m3 total storage capacity. Among the total storage, there
are 1.06 billion m3 for flood storage and 3.88 billion m3 for
regulating storage.
• SXG: Shenxigou is a smaller hydropower station located

downstream of PBG, installed with 4 × 165 MW generators.
The standard storage level of the reservoir is 660 m, with
a total storage capacity of 32 million m3. As a regulation
station of PBG, its inflow is significantly affected by the
drainage of the PBG dam.
• Danba is a hydrology monitoring station located in the up-

per basin of Dadu River, which covers 52,738 km2 area, ac-
counting for 68% of the whole basin. Due to its geographical
location and essential role in monitoring the meteorology
of the river, this data is a significant reference for predicting
the overall downstream water flows.
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Table 2
Statistics of three real-world datasets.
Dataset PBG SXG Danba

Time Spanning 2 years 2 years 2 years
Time Interval 1 h 1 h 1 h

Time Series
Water Inflow [0.0, 7020.0] [0.0, 5571.0] [0.0, 4531.5]
Avg. Inflow 1549.0 1496.9 906.7
Water Outflow [119.0, 5670.0] [53.8, 6090.0] NULL
Generation Flow [119.0, 2470.0] [55.1, 2480.0] NULL
Temperature/◦C [−24.4, 21.7] [−24.4, 21.7] NULL
Power Generation [0.0, 3587.8] [0.0, 660.0] NULL
Rainfall (mm) NULL NULL [0.0, 34.0]

Sequential Factors
MonthOfYear [1, 12] [1, 12] [1, 12]
DayOfMonth [1, 31] [1, 31] [1, 31]
HourOfDay [0, 24) [0, 24) [0, 24)

Table 2 shows the statistics of the three datasets. Each dataset
ncludes observations spanning two years — from Jan.1, 2017,
o Dec.31, 2018. The two datasets from hydropower stations
nclude three types of observed multivariate time series data
hydropower generation, water inflow, and temperature. The

ata from Danba contains two types of hydrological time series,
.e., water inflow and precipitation. For each dataset, we used the
istorical 50% data for training, 25% for model validation, and the
est 25% for testing.

.1.2. Baseline models
The following baseline approaches are selected for comparison

n the experiments:

• History Average (HA) – treats the average of observations of
the last C time steps as the predictions, and we set C = 5.
• ARIMA – a generalization of an autoregressive moving av-

erage (ARMA) model. It is a statistical analysis method for
time-series data, which can well understand the dataset and
predict future trends based on past periods. It was employed
in [14] for inflow prediction.
• SVR – a regression type of support vector machine (SVM),

which has been utilized for inflow forecasting and has been
shown to achieve quite good performance [84,85]. Here we
use the linear kernel for SVR following [84].
• GRU [24] – is an RNN variant that can process events with

long-term observations and is more efficient than another
popular variant LSTM with comparable performance. It has
been widely used for time-series forecasting, including in-
flow prediction [25,27,85].
• GRU-VAE [86] – employs GRU as the basic module for both

encoder and decoder and employs VAE [87] to reconstruct
the latent representations of input time series for time series
forecasting.
• Latent-ODE [76] – generalizes RNNs to continuous-time

hidden dynamic systems defined by neural ODEs. It can
naturally handle arbitrary time gaps between observations
and explicitly model the probability of observation times
using Poisson processes.
• AST [32] – an Adversarial Sparse Transformer (AST) that

uses a sparse Transformer as the generator to learn a sparse
attention map for time series and leverages a discriminator
to improve long-term dependencies.
• Informer [33] – a state-of-the-art Transformer-based time

series forecasting model. It consists of three distinct compo-
nents: a ProbSparse attention mechanism with lower time
complexity, a distilling operation highlighting the dominant
attention representation, and a generative decoder predict-

ing long time-series sequences.

9

• FlowODE [34] – is an ODE-based inflow forecasting model.
It models the RNNs with neural ODEs to provide a dynamic
perspective of learning continuous time series data. Besides,
FlowODE encodes the stochasticity of RNN hidden layers
and the uncertainty of long- and short-term dependencies
among temporal observations.

5.1.3. Parameter settings & implementation details
All models are tuned to the best performance with early stop-

ping when validation loss has not declined for 100 consecutive
epochs. The length of input sequence of each model is set as T =
168. We train all deep learning models using a dynamic learning
rate with an initial value of 3×10−4, which halves every 50 epoch.
For our DTODE, we set the number of the layers L of both encoder
and decoder as 4, and the dimension of hidden states dm as 256.
In self-attention occupation, we employ canonical dot-product
for effective information extraction and layer normalization [88]
to stabilize the hidden state dynamics in the neural networks.
For ODE settings, we apply the adjoint method [70] for back-
propagation for less resource consumption. Besides, we utilize
the Runge–Kutta method as mentioned in Section 4.3 based on
the compromises between computational precision and model
efficiency.

5.1.4. Evaluation protocols
We evaluate the algorithms with three metrics that are gen-

erally used for assessing time series prediction models. Among
them, Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE) are two scale-dependent measures, while Mean Absolute
Percentage Error (MAPE) is a deviation proportion measure.

5.2. Performance comparisons (RQ1)

We conducted two different comparisons that are meaningful
for dam operation: (1) immediate forecasting (i.e., τ = 1 hour),
and (2) multi-horizon forecasting – where τ = 24 hours (i.e., 1
day) and τ = 24× 7 hours (i.e., 1 week), respectively.

5.2.1. On inflow forecasting
Table 3 shows the performance of different approaches in

forecasting the inflow of three reservoirs. As we can see, our
proposed method DTODE achieves the best performance in terms
of all the metrics across three datasets.

In addition, we have the following important observations.
Firstly, the statistical time series models such as HA and

ARIMA perform poorly due to their inability to model non-linear
dependencies in hydrological multivariate time series. SVR, which
has been widely used in inflow forecasting, performs worse
than recurrent neural models such as GRU. This result demon-
strates the superiority of RNNs on learning long- and short-term
dependencies in time series.

Secondly, the GRU models can be improved by capturing the
stochasticity of time series data, as done by GRU-VAE and La-
tentODE. As a variational sequential learning method, GRU-VAE
combines the known priors to build a probabilistic model for
latent factor learning and posterior inference. However, its im-
provement over recurrent neural networks is limited, largely due
to the bottleneck of VAE in encoding the factors of variation —
which, therefore, restricts its performance in learning useful and
compact representations of the time series data.

Thirdly, both Latent-ODE and FlowODE improve inflow
forecasting by modifying the recurrent neural networks with
continuous hidden layers through modeling the dynamic inflow
forecasting systems while solving the parameter redundancy
issue. However, the two models also rely on RNNs to model

the sequential dependencies of time series data, which have
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Table 3
The inflow forecasting performance of baselines and our model.
Datasets PBG SXG Danba

Metrics RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

HA 685.0 514.8 0.734 582.6 374.8 0.801 39.52 19.14 0.020
ARIMA 486.7 378.1 0.705 328.2 223.3 0.555 25.58 13.31 0.014
SVR 453.1 355.9 0.684 231.5 160.4 0.344 19.85 10.54 0.011
GRU 416.1 328.9 0.665 177.6 126.8 0.278 15.41 8.593 0.009
GRU-VAE 415.1 326.2 0.665 174.6 124.8 0.261 14.01 8.166 0.009
Latent-ODE 412.4 324.5 0.659 172.7 124.9 0.258 13.57 7.872 0.008
AST 423.7 334.4 0.668 183.5 132.1 0.284 11.89 7.049 0.007
Informer 413.5 325.8 0.664 175.3 123.2 0.259 9.596 6.052 0.006
FlowODE 401.5 312.3 0.621 166.2 114.8 0.231 9.534 5.980 0.006

DTODE 397.4 305.9 0.613 151.4 101.7 0.218 9.393 5.951 0.006
Table 4
Multi-horizon forecasting comparisons on three datasets.
Datasets PBG SXG Danba

Metrics RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

SVR 602.6 472.4 0.909 351.9 243.8 0.523 26.80 14.23 0.015
GRU 553.4 437.4 0.884 270.0 192.7 0.423 20.80 11.60 0.012
GRU-VAE 552.1 433.8 0.883 265.4 189.7 0.397 18.91 11.02 0.012
Latent-ODE 532.0 418.6 0.850 253.0 183.0 0.378 17.91 10.39 0.010
AST 550.8 434.7 0.868 273.4 196.8 0.423 15.81 9.375 0.009
Informer 537.6 423.5 0.863 261.2 183.6 0.386 12.76 8.049 0.008
FlowODE 518.9 397.7 0.801 232.0 166.4 0.348 12.42 7.803 0.008

1 day

DTODE 508.7 391.6 0.785 218.5 146.4 0.314 12.21 7.736 0.008
SVR 634.3 498.3 0.958 388.9 269.5 0.578 28.78 15.28 0.016
GRU 582.5 460.5 0.931 298.4 213.0 0.467 22.34 12.46 0.013
GRU-VAE 577.0 453.4 0.923 293.3 209.7 0.438 20.31 11.84 0.013
Latent-ODE 556.7 438.1 0.890 276.3 199.8 0.413 18.73 10.86 0.011
AST 580.5 458.1 0.915 300.9 216.6 0.466 16.65 9.869 0.010
Informer 566.5 446.3 0.910 287.5 202.0 0.425 13.43 8.572 0.009
FlowODE 546.4 421.5 0.844 264.9 172.4 0.366 13.20 8.300 0.008

1 week

DTODE 536.5 413.0 0.828 251.7 164.8 0.353 13.04 8.260 0.008
been proven to be inefficient in dealing with long-term correla-
tions [28]. Our DTODE inherits the benefits of previous ODE-based
methods, while offering several key advantages. In particular, our
method totally discards the auto-regressive networks in RNNs.
Instead, it models the hydrological time series with self-attention
networks, which allows the model to pay attention to any part of
the historical observations regardless of distance.

Lastly, DTODE significantly outperforms previous Transformer-
ased models such as AST and Informer, which verifies our
otivation of improving self-attention networks with continu-
us dynamic models. AST is capable of capturing the long-term
eliance and correlations between different kinds of observations.
lthough it may reduce the error accumulation and regularize
he model at the sequence level, AST relies on adversarial net-
orks [89] which is known as unstable during model training.

nformer improves the self-attention in a typical Transformer
ith sparse attention and reduces the space complexity with the
istilling operation. Nevertheless, Informer still needs to stack
any discrete layers. More importantly, the Informer model

ocuses on learning long-term dependency, restricting its perfor-
ance in capturing subtle local patterns in sequences (e.g., due

o food and drainage of the upstream reservoir) and complex
utual influence among multivariate time series (e.g., precipi-

ation) that are crucial in learning hydrological data. In contrast,
ur DTODE introduces the expressive time series embedding and
ynamic mechanism for modeling the hydrological data, enabling
s to capture the co-evolving patterns of multiple factors and
erform free calculations and optimizations without incurring
omputational overhead through numerical ODE solvers.

.2.2. On multi-horizon forecasting
Multi-step-ahead inflow forecasting is of great interest for
anaging the dams since it can provide more reliable predictions

10
and facilitate decision-making in front of extreme events. Table 4
compares the performance of different approaches in multi-step-
ahead inflow forecasting, demonstrating the superiority of DTODE
over other baselines in predicting the future inflow with distinct
horizons.

RNN-based methods such as GRU and GRU-VAE predict the
future inflow in an auto-regressive manner, suffering from the
error accumulation issue that significantly deteriorates their fore-
casting performance. Transformer-based approaches achieve rel-
atively better performance due to their ability to model and
forecast long-term dependencies. However, these methods also
rely on deeper stacking of self-attention layers that still accu-
mulate errors and, more importantly, are restricted by the input
sequence sampling intervals.

ODE-based methods – i.e., Latent-ODE, FlowODE, and our pro-
posed DTODE – are free to extrapolate the evolving time series
and therefore perform better than other baselines because of
their nature of modeling the neural networks as dynamic systems
and therefore perform better than the non-ODE baseline ap-
proaches. In other words, the continuous characteristics of these
models allow better long-term inference and flexible extrapola-
tions of multi-horizon water inflow. Compared to Latent-ODE and
FlowODE, our DTODE is not restricted by the RNN architecture
and, therefore, avoids the error accumulation problem raised
by autoregressive forecasting. Additionally, DTODE is capable of
learning the critical long-term dependencies due to the inherent
self-attention mechanism.

To further validate the robustness of the proposed DTODE, we
run our model 5 times on each horizon across three datasets with
different random seeds. Table 5 reports the statistical results in
terms of RMSE, MAE, and MAPE with standard deviations, which

supports the effectiveness and stability of our model.
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Fig. 5. Ablation study: the effect time series and sequential factors embedding (TS & SF Embedding).
Table 5
Statistical results on three datasets.
Datasets PBG SXG Danba

1 h
RMSE 397.4 ± 3.3 151.4 ± 2.0 9.393 ± 0.151
MAE 305.9 ± 2.4 101.7 ± 1.3 5.591 ± 0.082
MAPE 0.613 ± 0.005 0.218 ± 0.002 0.006 ± 0.000

1 day
RMSE 508.7 ± 8.3 218.5 ± 10.1 12.21 ± 0.17
MAE 391.6 ± 3.5 146.4 ± 6.5 7.736 ± 0.108
MAPE 0.785 ± 0.062 0.314 ± 0.030 0.008 ± 0.000

1 week
RMSE 535.5 ± 9.4 251.7 ± 9.5 13.04 ± 0.18
MAE 413.0 ± 5.8 164.8 ± 5.7 8.260 ± 0.147
MAPE 0.828 ± 0.103 0.353 ± 0.054 0.008 ± 0.000

5.3. Ablation studies (RQ2)

Recall that DTODE consists of three main components: data
mbedding, dynamic self-attention solver, and multi-horizon ex-
rapolation. To study the effect of each part, we perform a series
f ablation studies by replacing the specific module with the
revious best approaches, and we report our observations next.

.3.1. Effect of time series and sequential factors embedding
In previous Transformer-based models [31,33,78,80,81], multi-

ariate time series are embedded and learned with self-attention
ayers in an end-to-end manner. In contrast, we propose to learn
he representations of time series and external factors separately.
o validate our method, we replace the data embedding method
n DTODE with a typical Transformer model.

Fig. 5 compares the performance across three datasets, which
roves the effectiveness of our method in learning data embed-
ings. The improvement lies in the time series causal convolution
nd positional factor embedding in our model. The two mecha-
isms encourage DTODE to simultaneously capture the patterns
f time series and the complex temporal dependencies while
eing aware of the time-related features crucial to future time
eries (e.g., inflow here) forecasting.
Besides, we find that DTODE reaps more gains on Danba

ecause precipitation is more informative than other features
e.g., water discharge and power generation), implying that our
ethod is more efficient in capturing the interactions between
ifferent time series. This can also be understood by the strategy
f the canonical Transformer in embedding time series data. That
s, the Transformer employs dot-product self-attention to match
he queries against keys, making it insensitive to local context and
rone to anomalies. In contrast, DTODE learns sequential patterns
ith causal convolution, which naturally focuses on the local pat-
erns and change points. The long-term dependency learning is
eft to the dynamic self-attention solver in the successive module.

Moreover, we can observe evident advantages of our method
n multi-horizon forecasting. This phenomenon can be explained
y the differences in time series embedding between DTODE
nd Transformer. The latter uses a constant sinusoidal matrix for
equence embedding. Nevertheless, our DTODE generates time
eries representation dynamically, allowing us to fit the different
orizons and predict multi-step-ahead inflow flexibly.
11
5.3.2. Effect of dynamic self-attention solver
Next, we investigate the effect of our dynamic self-attention

solver (DSAS) by replacing it with state-of-the-art self-attention
designs. Three counterparts are considered in this experiment,
including canonical self-attention (SA) used in Transformer [28],
sparse self-attention (SSA) proposed in AST [32], and ProbSparse
self-attention (PSSA) in Informer [33]. Considering that the at-
tention mechanism is mainly used to discover the reliance and
obtain corresponding representations, we only report the short-
term forecasting results. Specifically, we set different layers (L =
2, 4, 6, 8) of different mechanisms and fix all other settings. The
experimental results are shown in Fig. 6, where we can observe
that the RMSE scores of SA, SSA, and PSSA decrease first and
then increases with the number of layers. However, our DSAS
can continuously optimize the model performance as the layers
increase. This result suggests that stacking more layers does not
guarantee better forecasting performance for baseline approaches
since their model parameters would increase significantly with L
– and, therefore, make them suffer from the overfitting problem.
In contrast, the performance of DSAS is stable and consistently
outperforms other approaches. DSAS is based on numerical ODE
solvers and thus only requires the same parameters as a one-layer
network, which allows us to continuously optimize the model
without incurring extra computational overhead.

5.3.3. Effect of multi-horizon extrapolation
Lastly, we present quantitative observations regarding the ef-

fect of multi-horizon extrapolation in DTODE. Recall that we
incorporate the numerical ODE solvers in DTODE, enabling it to
learn and predict the inflow at arbitrary multi-steps ahead. This
characteristic eases the efforts of previous works in aligning the
input and output of time series in the encoder and decoder, re-
spectively. Fig. 7 shows the accumulation errors in multi-horizon
forecasting. Clearly, our method successfully reduces errors in-
creasing with the time horizon. This result proves the advantages
of our method in multi-step-ahead forecasting since it can, to a
large extent, resist error accumulations. Although we only report
1-day and 1-week results following the above empirical evalu-
ations, it is worthwhile noting that our method can extrapolate
the forecasting results in any time horizon, due to the continuous
dynamic system modeling in the DTODE.

5.4. Model interpretability (RQ3)

We now present our observations regarding the third question
that our experiments are attempting to address — the potential
benefits of DTODE in terms of interpretability.

5.4.1. Visualization of the sequential factors embedding
Sequential time-related factors play important roles in fore-

casting future inflow, as they provide additional features implying
the involving patterns of the hydrological time series. For exam-
ple, the inflow exhibits certain daily periodicity, and the volume
in the summer is significantly larger than in the winter. There-

fore, it is highly desirable to embed the temporal factors and
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Fig. 6. Ablation study: the effect of dynamic self-attention solver (DSAS). We replace DASA in DTODE with an alternative self-attention mechanism, including canonical
elf-attention (SA), sparse self-attention (SSA), and ProbSparse self-attention (PSSA).
Fig. 7. Ablation study: the effect of multi-horizon extrapolation.
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Fig. 8. Visualization of the time-related factor embedding for DTODE and two
typical sequential time embedding methods. The x-axis denotes the index of
ach time step (i.e., 1-hour interval).

ake the time series aware of the corresponding time-related
egularization.

Fig. 8 compares our method with two regular sequential time
mbeddings in the Transformer. Sinusoidal embedding relies on a
onstant matrix for sequence learning, which obtains a ‘‘smooth"
mbedding as the distance between the neighboring time steps
re symmetrical and decays fluently with time. In contrast, posi-
ional embedding with random initialization learns a segmented
atent representation without obvious evolving patterns. Since
ransformer is originally designed for natural language embed-
ing, positional embedding injects the input words with their
elative information. However, the evolving patterns and the
ubtle local changes are ignored by this method. Our model is
nitialized with the sinusoidal matrix and optimized by the time-
elated categorical features, assisting DTODE to concomitantly
ttend to the time series patterns and natural time intervals.

.4.2. Visualization of the learned latent representation
Next, we demonstrate that our DTODE model can successfully

earn the nonlinear and non-stationary patterns of time series
y visualizing the learned latent representations. We project the
atent encoding vectors HT+τ of inflow time series to the 2-
imension space using t-SNE [90] algorithm and plot the results
n Fig. 9, where each point denotes an inflow time series colored
y a specific feature of that time series. Here we select three
eatures, i.e., the predictive value of inflow, the average, and the
ariance of history inflow. Besides, we use their relative sizes
12
Fig. 9. Visualization of the latent space learned on the SXG dataset.

s coloring standards, i.e., the higher the value, the darker the
olor. We can observe that the latent representations correspond
losely to these standards, reflecting the trends and patterns of
he time series to a certain extent. Therefore, the representations
earned by our model are expressive enough to facilitate inflow
orecasting.

.5. Quantitative results

Finally, we investigate the qualitative forecasts made by the
TODE. Specifically, we randomly select the data in two different
eriods (a week and a month) for each dataset and show the fit of
TODE against the actual inflow values, as illustrated in Fig. 10.
e can clearly see that our method can accurately predict the

rend of time series even when the inflow shows frequent fluc-
uations and sharp turns. Moreover, DTODE performs better on
anba than on PBG and SXG. Because PBG and SXG are artificial
ams, their operations are affected by many other unpredictable
actors, such as water drainage or turbine maintenance in up-
tream stations. In addition, the rainfall of the areas surrounding
he Danba basin is clearly recorded, which is the essential factor
ffecting the river’s inflow. This result also suggests that our
ethod can successfully adapt to the dynamic and co-evolving
ultivariate hydrological time series patterns.

.6. Deployment

We close this section with a note that our model has been
uccessfully deployed on the Intelligent Decision-making Support
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Fig. 10. Quantitative results on PBG, SXG, and Danba datasets. We randomly select a few samples in two periods (a week and a month) and report the forecast
esults of DTODE against the true inflow. Other methods are not plotted for visibility.
Fig. 11. Snapshots of the IDSS platform and the running of the DTODE model.
ystem (IDSS) platform of a large-scale hydropower station and
s continuously optimized with new hydrological observations.
ig. 11(a) shows a snapshot of the IDSS platform, where both
atural factors (e.g., weather, rainfall, and water level) and so-
ial factors (e.g., power generation schedule) are displayed. An
llustration of the real-time inflow forecasting made by DTODE
s shown in Fig. 11(b).

. Concluding remarks

In this paper, we presented DTODE – a novel multi-horizon
eservoir inflow forecasting model for large-scale hydropower
tations. DTODE extends the Transformer-based time series
13
method with a numerical ODE solver that allows flexible multi-
horizon extrapolation. Our method provides a dynamical per-
spective of learning hydrological multivariate time series, which
requires significantly fewer parameters than previous works. We
conducted extensive experiments on three real-world datasets,
and the results validated the superiority of our proposed DTODE
in terms of both forecasting accuracy and interpretable model
behavior.

The proposed model has been successfully deployed on the
intelligent inflow forecasting system in a large-scale hydropower
generation company. Our algorithm is continuously optimized
with new hydrological observations.
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As part of our future work, we are interested in improv-
ing the extrapolation of ODE solver with more complex and
flexible approaches (e.g., improving efficiency by a stable dis-
cretization [91]). Another interesting direction is to stabilize the
training process of DTODE with alternative ODE solvers, such as
ANODE [74]. Complementary to this, modeling stochastic latent
representations with variational inference may enable the model
to make probabilistic inflow inference and forecasting, which is
also important for interpreting the model behavior and forecast
results. Last but not the least, we plan to expand DTODE frame-
work to deal with larger-scale spatial extents, involving multiple
rivers [92].
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