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A B S T R A C T

Source localization, as a reverse problem of the graph diffusion, bears paramount significance for a multitude
of applications, such as tracking social rumors, detecting computer viruses, and finding epidemic spreaders.
However, the innate uncertainty of the diffusion process complicates this task — different source nodes
can result in similar or identical diffusions over time, making the source localization task a complex, ill-
posed problem. Most existing solutions utilize deterministic techniques and therefore cannot model the
diffusion uncertainty of source nodes. Moreover, current probabilistic approaches are inefficient to conduct
smooth transformations with variational inference. To overcome these limitations, we propose a probabilistic
framework using normalizing flows with invertible transformations and novel objective optimization methods
to explicitly model the uncertainty of the diffusion sources. Moreover, graph neural networks are leveraged to
encapsulate propagation patterns between the observed diffusion and sources of high uncertainty. Extensive
experiments conducted on six distinct networks demonstrate the effectiveness of our model over strong
baselines, up to 11.8% and 8.2% improvements in terms of F1 and AUC, respectively, on Twitter dataset
under real-world diffusion.
1. Introduction

Graph diffusion prediction is a critical task in social networks and
graph mining, aiming to uncover the propagation patterns of informa-
tion and predict its future state (e.g., size, speed, and scale) (Yang
& Counts, 2010). On the contrary, source localization is the inverse
problem of the graph diffusion, seeking to identify the source(s) of
the observed diffusion process (Ying & Zhu, 2018). Source localization
plays a key crucial role in various practical applications, including
detecting misinformation and rumor in social networks, controlling
epidemic in infectious diseases, and isolating failures in smart grids.
It is also aids in understanding the graph diffusion process. Solving
the graph source localization problem usually relies on limited dif-
fusion knowledge, such as a subset of the graph topology and node
states (Jiang, Wen, Yu, Xiang, & Zhou, 2016).

Given one or multiple source nodes propagating through a network
(e.g., a rumor diffusing through a Twitter social network). After a
certain period of time, we have an observed diffusion. The source
localization is the inverse process of this diffusion: our objective is
to identify the original source(s) by given this partial observed dif-
fusion. Existing approaches to source localization primarily involve
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network structure analysis-based methods (Prakash, Vreeken, & Falout-
sos, 2012; Shah & Zaman, 2011; Zhu & Ying, 2014), information
propagation-based methods (Agaskar & Lu, 2013; Pinto, Thiran, &
Vetterli, 2012; Seo, Mohapatra, & Abdelzaher, 2012), and learning-
based methods (Dong, Zheng, Hung, Su, & Li, 2019; Guo, Zhang, Zhang,
& Fu, 2021; Ling, Liang, Wang, & Zhao, 2022; Wang, Jiang, & Zhao,
2022; Wang, Wang, Pei, & Ye, 2017). Among these, network structure
analysis-based methods determine the propagation source by analyz-
ing the graph network structure, including graph centrality analysis,
neighbor discovery, and algorithms based on graph models. Informa-
tion propagation-based methods inject sensors into graph networks for
source tracking. Learning-based methods learn from a large number of
known information propagation paths or simulation of the propagation
process to extract the propagation features and patterns, and then
establish a predictive model to predict the propagation sources.

Despite achieving promising results in graph source localization, ex-
isting methods still face several notable challenges. First, most learning-
based methods focus on deterministic learning and are unable to quan-
tify the diffusion uncertainty of the sources. The diffusion uncertainty
arises from the inherent variability and unpredictability in identifying
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Fig. 1. A simple example of uncertainty problem in graph source localization. Source
nodes 𝑋1 and 𝑋2 are totally different from each other, but they finally produce the
same diffused results 𝑌𝑐 on the graph. The source localization task from 𝑌𝑐 to 𝑋 can
be highly uncertain.

the source nodes due to different source nodes may resulting in very
similar or identical diffusion patterns over time. We illustrate this
concept in Fig. 1, where two distinct source nodes 𝑋1 and 𝑋2, lead to
the same diffusion result 𝑌𝑐 on the graph. The source localization task,
therefore, becomes highly uncertain and a hard problem for the models
to solve. Such uncertainties may stem from the network structures or
from the inherent stochasticity of the diffusion process due to random
chance or external influences (Wang, Vasilakos, Ma, & Xiong, 2014).

Second, current probabilistic methods are inadequate for conduct-
ing smooth transformations between latent space and data distribution
with variational inference models (Kingma, Welling, et al., 2019). As
the network grows large and complex, transforming the multivariate
Gaussian distribution into the data distribution becomes more challeng-
ing. Specifically, the uncertainty of the source nodes leads to numerous
combinations of the diffusion possibilities and discrete node statuses,
requiring us to transform a high-dimensional multivariate Gaussian
when building the generative model. Third, network structure analysis-
based methods often demand exploring the entire topology space and
special node features, resulting in high computational costs for finding
sources under variant diffusion patterns (Jiang et al., 2016).

To overcome the limitations mentioned above, we propose a prob-
abilistic graph diffusion model for source localization, named PGSL.
First, we adopt a probabilistic framework to handle the diffusion un-
certainty challenge. Specifically, we build a probabilistic model that
learns graph diffusion patterns given prior knowledge and conditional
probability of the source nodes. Then we solve the inverse problem
(i.e., source localization) by leveraging variational inference and well-
designed optimization methods, allowing us to capture and quantify
the inherent uncertainties in the information diffusion process. Second,
we use deep generative models – normalizing flows – to conduct
smooth transformations between Gaussian and target data to estimate
the source node distribution. At last, GNNs are embedded in PGSL to
simultaneously handle the learning of complex graph-structured data
with uncertainties of the forward process. They learn intrinsic features
through neural networks with specifically designed optimization con-
straints and avoid the expensive searching cost on the entire graph
topology. The main contributions are summarized as:

• We design a new probabilistic framework to solve the graph
source localization problem, which adopts variational inference
and novel objective optimization methods to infer source nodes
reversely.

• We propose a generative model that integrates normalizing flows
with invertible transformations to explicitly handle the uncertain-
ties of the diffusion processes. It can produce different source
nodes depending on the intrinsic characteristics of the diffusion,
which in turn helps the training of the forward model.
2

• Our model is empowered with GNNs to capture information
propagation features. GNNs naturally have impressive abilities
for modeling graph-structured data, which can rebuild the graph
diffusion process under various propagation patterns.

• Extensive experiments on six real-world datasets under different
diffusion patterns demonstrate the effectiveness of PGSL over
strong baselines in locating the diffusion sources for various kinds
of graphs including social, citation, collaboration, and power grid
networks.

The rest of the paper is organized as follows. We review the related
work in the next Section. Section 3 introduces necessary background
knowledge of the source localization problem, propagation models, and
normalizing flows. In Section 4, we describe the technical details of
our proposed framework PGSL. Experimental settings and results are
reported in Section 5. At last, we conclude the paper and discuss future
directions in Section 6.

2. Related works

In this section, we review the related literature from three aspects:
(1) information diffusion in graphs; (2) source localization (the inverse
problem of diffusion); and (3) deep generative models used on inverse
problems.

2.1. Information diffusion in graphs

Graph information diffusion estimation (a.k.a. influence spread es-
timation) is a task of approximating the expected number of influenced
nodes given the sources on graphs (Xia, Li, Wu, & Li, 2021). Computing
information diffusion in graphs is an NP-hard (Chen, Wang, & Wang,
2010) problem, and thus previous efforts (Goyal, Lu, & Lakshmanan,
2011; Kempe, Kleinberg, & Tardos, 2003; Zhou, Zhang, Guo, Zhu, &
Guo, 2013) often adopted Monte Carlo simulations or heuristic meth-
ods to estimate the influence spread. Following approaches (Bielski &
Trzcinski, 2018; Du et al., 2016; Xie et al., 2020) leveraged deep learn-
ing models to predict the diffusion states, but neglected to incorporate
graph topologies in their models.

Traditional diffusion models utilize concepts from epidemiology to
simulate the propagation of information. Two exemplary models are
the Susceptible–Infectious (SI) and Susceptible–Infectious–Recovered
(SIR) models, which delineate the process of infection among individ-
uals (Allen, 1994; Anderson & May, 1992). The Bass diffusion models
posit that potential adopters are swayed by both personal interactions
and exposure to mass media (Bass, 1969). Stochastic process-based
models, on the other hand, derive from the behavioral patterns of infor-
mation sharing in social networks, often making assumptions regarding
the intensity of the diffusion process across sequential events. Examples
of these models include the Poisson point process (Shen, Wang, Song,
& Barabási, 2014) and the self-exciting Hawkes point process (Nickel
& Le, 2021; Yu, Xu, Trajcevski, & Zhou, 2022).

Further, Threshold information diffusion models such as Indepen-
dent Cascade (IC) (Goldenberg, Libai, & Muller, 2001) and Linear
Threshold (LT) models (Granovetter, 1978) hypothesize that individual
adoption of information is contingent upon the states of their respec-
tive neighbors. Machine learning models also come into play in the
simulation and prediction of information diffusion. One category of
such methods employs hand-crafted features to capture the patterns
of diffusion (Cheng, Adamic, Dow, Kleinberg, & Leskovec, 2014; Zhou,
Xu, Trajcevski, & Zhang, 2021), whereas another category harnesses the
capabilities of end-to-end learning models, such as sequential-based (Li,
Ma, Guo, & Mei, 2017; Wang et al., 2017) and embedding-based neural
networks (Zhang, Gong, Wu, Huang, & Huang, 2016).

Recently, researchers have utilized graph neural networks (GNNs)
to predict the influence of the diffusion (Leung, Cuzzocrea, Mai, Deng,
& Jiang, 2019; Li et al., 2017; Qiu et al., 2018; Xu, Zhong, Li, Trajcevski
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and Zhou, 2022; Zhou et al., 2021). GNNs can naturally model the
graph topology, thereby enhancing the prediction performance of in-
formation diffusion. Qiu et al. (2018) and Leung et al. (2019) leveraged
the local subgraphs with neighboring node states to determine whether
a node is activated. In Jain, Katarya, and Sachdeva (2023), the authors
used GNNs to categorize opinion leaders for information diffusion. On
the other hand, Li et al. (2017), Xu, Zhou, Zhang and Liu (2022) and
Xu, Zhou, Zhang, Liu, and Trajcevski (2021) sought to predict the
popularity of social contents by analyzing the diffusion structures and
temporal dependencies between information adoptions.

2.2. Source localization

Diffusion source localization is to identify the source(s) of a diffu-
sion process using observations such as the node states and timing of
node infections (Ying & Zhu, 2018). Effective source localization has
many practical societal and economic impacts, such as detecting rumor
sources in social networks (He, Li, Zhou, & Yang, 2021).

Previous studies (Karamchandani & Franceschetti, 2013; Luo, Tay,
& Leng, 2013; Nguyen, Nguyen, & Thai, 2012; Shah & Zaman, 2011)
primarily employ centrality measures to identify potential propagation
sources. These methods are designed to be used on tree-like networks,
and with information propagation following the conventional epidemic
model. For example, Shah and Zaman (2011) proposed rumor centrality
measures and utilized likelihood function to calculate the rumor cen-
trality score of each node according to the topology of the diffused
graph. In addition, epidemic models such as SIR and SIS (Luo &
Tay, 2012; Luo, Tay, & Leng, 2014; Zhu & Ying, 2014) are widely
adopted to address this problem within more sophisticated propagation
mechanisms. Zhu and Ying (2014) proposed a notion called Jordan
centrality, which is an extension of the traditional diffusion kernel with
sparse observations. However, these studies are limited to solving single
source localization with certain underlying propagation model (e.g., SI
or SIR) and are constrained by the tree-like topology of the diffusion.

Researchers then extended the single source localization prob-
lem to multi-source scenarios and to generic graph topologies. Net-
Sleuth (Prakash et al., 2012) employed the Minimum Description
Length principle to identify the best set of source nodes. LPSI (Wang
et al., 2017) is the first model to identify multiple sources without
knowing the underlying propagation model, which is based on the
idea of source prominence and inspired by a semi-supervised label
propagation. In addition, different to leveraging the snapshot of the
diffusion states, researchers have proposed to inject sensors into the
diffusion network to capture the steps of propagation, which identify
the propagation sources progressively (Agaskar & Lu, 2013; Pinto et al.,
2012; Seo et al., 2012).

To address the high computational costs and the complexity of
acquiring various underlying propagation models in the real world,
current studies have turned to graph neural networks (GNNs) to en-
hance localization performance. GCNSI (Dong et al., 2019) leverages
graph convolutional networks (GCNs) to enhance the performance of
LPSI (Wang et al., 2017) for detecting multiple rumor sources with a
supervised learning method. IGCN (Guo et al., 2021) combines GCNs
with the source localization problem via attention mechanism, which
significantly reduces the computational complexity. IVGD (Wang et al.,
2022) is an invertible graph diffusion model utilizing the graph resid-
ual network with Lipschitz regularization to infer sources on generic
graph diffusion models. However, these deterministic learning methods
cannot quantify the uncertainty of the diffusion sources.

To tackle the inherent uncertainty issue in diffusion process, deep
generative models are employed to learn the complex patterns of graph
diffusion sources. One such model is the SL-VAE (Ling et al., 2022),
which is the first to utilize a variational inference-based framework to
infer the optimal diffusion sources based on its diffused observations.
However, when dealing with large-scale graphs and complex diffu-
sion patterns, SL-VAE and similar models are often less accurate and
3

expressive.
Table 1
Mathematical notations.

Notation Description

𝐺 Graph
𝑉 Nodes set
𝐸 Edges set
𝑌 , 𝑌 Infected node observations and predictions
𝑋, 𝑋̂ Original and predicted source node vectors
𝑋̃ Source node vector from training data
𝜃 Normalizing flow bijector
𝜃, 𝜙,𝛩 Model parameters

2.3. Deep generative models

Deep generative models use probabilistic transformations to repre-
sent a complex distribution as simpler ones, allowing them to model
high-dimensional prior distribution. Given that locating graph diffusion
sources is an inverse problem of graph diffusion with inherent, in-
tractable uncertainty, prior knowledge of the diffusion data is necessary
for accurately locate the diffusion sources (Hegde, 2018).

Generative adversarial networks (GANs) (Goodfellow et al., 2014)
are a popular class of deep generative models that use various kinds of
learning modules to transform data samples from a fixed base distribu-
tion. GANs utilize an auxiliary discriminator to provide training signals
and estimate the divergence between data samples. Another two classes
of deep generative models are variational autoencoder (VAE) (Kingma
& Welling, 2014) and autoregressive models (Germain, Gregor, Murray,
& Larochelle, 2015). Both models are widely used classes for learning
the priors in many image and game-related problems (Ledig et al.,
2017; Yu et al., 2018). These generative models do not have reverse or
inverse transformations with prohibitive restrictions. GANs and VAEs
do not provide rich posterior and are less expressive for modeling com-
plex data distributions. On the other hand, autoregressive models suffer
from slow sampling, as the forward calculation of an autoregressive
flow is not parallelizable. Consequently, a reversible deep generative
model with low computation cost is desired to transform the base
distributions to data distributions while maintaining the capabilities of
density estimation and efficient sampling process.

Normalizing flows (NFs) (Rezende & Mohamed, 2015) have gained
much attention and have been applied in many research areas. The
basic idea behind NFs is to use a series of invertible transformations
with easily computable Jacobian determinants to learn a function that
maps a simple distribution to a complex one. However, NFs do not have
tractable inverse transformations and cannot be trained directly on the
sampled data. Furthermore, the cost of computing Jacobian is (𝐷3)
in general where 𝐷 is the dimension of random variables. To address
this problem, some studies (Huang, Krueger, Lacoste, & Courville, 2018;
Rezende & Mohamed, 2015) constructed a tractable Jacobian matrix
called autoregressive flows. However, the ability of arbitrary distri-
butions to be transformed into close-to-truth distributions is limited
when dealing with high-dimensional data (Kong & Chaudhuri, 2020).
Continuous normalizing flows (CNFs) have been proposed to integrate
continuous-time dynamics into the generative model and replace the
warping function (Chen, Rubanova, Bettencourt, & Duvenaud, 2018).
The transformations of CNFs are time-varying and are solved via an
ordinary differential equation (ODE). Motivated by FFJORD (Free-
form Jacobian of reversible dynamics) (Grathwohl, Chen, Bettencourt,
Sutskever, & Duvenaud, 2019), which enables unrestricted learning
architectures in a continuous-time invertible model, we propose a more
scalable and robust solution to address the uncertainty problem in
graph source localization.

3. Preliminaries

In this section, we formally define the source localization problem
and provide background information on propagation and generative
models. We list mathematical notations used throughout the paper in

Table 1.
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3.1. Problem definition

Given an undirected graph 𝐺 = (𝑉 ,𝐸), where 𝑉 is the set of nodes
and 𝐸 is the set of edges. Let 𝑌 = {𝑦𝑖}𝑖 ∈ R|𝑉 | be the infection state
vector, where 𝑦𝑖 = 1 if the node 𝑖 is infected and 𝑦𝑖 = 0 otherwise.
Let 𝑋 = {𝑥𝑖} ∈ R|𝑉 | be the diffusion source vector, where 𝑥𝑖 = 1
if the node 𝑖 is the source node and 𝑥𝑖 = 0 otherwise. A single
propagation in the graph can have one or multiple diffusion sources.
Due to the highly uncertain process of the diffusion, we aim to build a
probabilistic model 𝑝(𝑋|𝑌 ) to explicitly measure the uncertainty from
the partial observation 𝑌 to the desired source(s) 𝑋. Since the structure
and scale of the diffused observation 𝑌 depend on the graph topology
𝐺, i.e., 𝑝(𝑋|𝑌 ,𝐺), the source localization problem can be formulated
as:

𝑋̂ = argmax
𝑋

𝑝(𝑋|𝑌 ,𝐺), (1)

where 𝑋̂ denotes the predicted source vector.

3.2. Propagation models

The propagation models can be divided into two categories: in-
fection models and influence models (Easley & Kleinberg, 2010). In-
fection models are used to characterize the spread of infectious dis-
eases between individuals and can be broadly categorized into two
types: Susceptible–Infected (SI) model (Allen, 1994) and Susceptible–
Infected–Recovered (SIR) model (Anderson & May, 1992). The SI model
assumes that each node is either susceptible or infected, and an infected
node has a probability 𝑝 of infecting its neighbors. Once a node becomes
infected, it remains in that state. On the other hand, the SIR model
introduces a third state ‘‘recovered’’, where infected nodes can recover
with a probability of 𝑞. Influence models are used to describe how users
in a social network influence each other. Several influence models have
been widely-adopted, such as Independent Cascade (IC) model (Gold-
enberg et al., 2001) and Linear Threshold (LT) model (Kempe et al.,
2003). In both IC and LT models, the active nodes have only one
opportunity to influence their susceptible neighbors. For LT model,
each node has a threshold 𝑡, which represents the probability that the
node will be influenced.

3.3. Generative models: Continuous normalizing flows & FFJORD flows

To parameterize a normalized distribution from a complex nor-
malized distribution, a set of invertible functions 𝑓𝑖 (𝑖 = 0,… , 𝑘)
are used to warp the normalized base distribution. By applying these
transformations 𝑘 times, the density 𝑝(𝑥) can be obtained from 𝑧0 as
follows:

𝑥 = 𝑓𝑘◦⋯◦𝑓1(𝑧0), (2)

log 𝑝(𝑥) = log 𝑝(𝑧) −
𝑘
∑

𝑖=1
log det

|

|

|

|

𝜕𝑓𝑖
𝜕𝑧𝑖−1

|

|

|

|

, (3)

here 𝑧𝑖 is the intermediate variable.
Computing the determinant of the Jacobian matrix can be time-

onsuming, as it has a complexity of (𝐷3). To overcome this ineffi-
iency, some studies (Huang et al., 2018; Rezende & Mohamed, 2015)
ave proposed the use of autoregressive flows to construct a tractable
acobian matrix. However, the capabilities of autoregressive flows to
ransform arbitrary distributions to close-to-truth ones are still limited
hen dealing high-dimensional data (Kong & Chaudhuri, 2020). Re-

ently, a new type of generative models called continuous normalizing
lows (CNF) has been proposed, which replaces the warping function
ith an integral of continuous-time dynamics (Chen et al., 2018).

t applies a transformation similar to Eq. (2) in a time-varying way
nd can be solved by an ordinary differential equation (ODE) solver.
pecifically, given a base distribution 𝑧0 ∼ 𝑝(𝑧0) and an ODE solver

defined by the function 𝑓 (𝑧(𝑡), 𝑡; 𝜃), we can obtain 𝑧(𝑡 ) to constitute 𝑥
4

1

by solving the initial value problem 𝑧(𝑡0) = 𝑧0, 𝜕𝑧(𝑡)∕𝜕𝑡 = 𝑓 (𝑧(𝑡), 𝑡; 𝜃).
The change in the log density can be computed as:
𝜕 log 𝑝(𝑧(𝑡))

𝜕𝑡
= −Tr(

𝜕𝑓
𝜕𝑧(𝑡)

), (4)

og 𝑝(𝑧(𝑡1)) = log 𝑝(𝑧(𝑡0)) − ∫

𝑡1

𝑡0
Tr(

𝜕𝑓
𝜕𝑧(𝑡)

)𝑑𝑡. (5)

Similar to CNF, FFJORD Flow is a continuous-time reversible generative
model (Grathwohl et al., 2019). It leverages an efficient log-likelihood
estimator and effectively reduces the high computational costs of CNF
from (𝐷2) to (𝐷). The computational complexity of the model
omes from computing the trace of 𝜕𝑓∕𝜕𝑧(𝑡). Specifically, this network
ses two tricks to reduce the computational costs, one trick is to
se reverse-mode automatic differentiation to make compute vector-
acobian products with approximately the same cost as evaluating 𝑓 ,

and the other trick is to take a double product of the matrix with a noise
vector to obtain the unbiased estimate of the trace of the matrix. These
lead to FFJORD becoming the first scalable and reversible generative
model with an unconstrained Jacobian.

4. Methodology

In this section, we describe the technical details of our proposed
model PGSL.

4.1. Overall framework

To quantify uncertainty in graph diffusion source localization, it is
necessary to employ a probabilistic model to characterize the condi-
tional probability 𝑝(𝑋|𝑌 ). For an efficient and accurate modeling of the
rior distribution 𝑝(𝑋), we leverage normalizing flows as the chosen
eep generative models. The invertible model is subsequently trained
ia variational inference to reconstruct the source node vector 𝑋.

Diffusion processes in real-world scenarios are influenced by myriad
actors, such as propagation protocol, individual immunity, external in-
luence, and diffusion rate. These contribute to significant variations in
he underlying processes. To address this challenge, we propose a gen-
ralized approach that incorporates graph neural networks (GNNs) to
nable our model to adapt to a wide range of diffusion patterns, thereby
ranscending the constraints of a limited set of predefined patterns.
NNs provide a robust tool for applying deep learning techniques to
on-Euclidean data, and they are particularly well-suited for capturing
nd expressing complex topological and diffusion patterns inherent in
raph source localization, especially when the graph becomes large and
omplex.

The overall framework of PGSL is depicted in Fig. 2. PGSL con-
ists of three main stages: (1) Modeling the uncertainty of the diffu-
ion sources (Section 4.2); (2) Learning the information propagation
atterns (Section 4.3); and (3) Inferring the source nodes (Section 4.4).

Throughout the training phase, we employ a hybrid approach of
Fs and GNNs to train an inverse model. We apply the NF bijector to

he original source node vector 𝑋 in the forward direction, yielding
he distribution of the latent space. We then sample a latent vector 𝑍
rom the obtained distribution, and pass it through the NF bijector in
he reverse direction to generate 𝑥̂re. This is reconstructed from the NF
ijector and accommodates the uncertainty of the diffusion source(s).
ubsequently, we feed 𝑋̂re into the GNN-based forward model to

simulate the real graph diffusion process.
During the inference phase, our objective is to infer the optimal

diffusion source 𝑋̂ given the observed graph diffusion 𝑌 . We randomly
sample a source node vector 𝑋0 from the binomial distribution and
optimize it through the trained inverse model and the training data 𝑋̃.
The aim is to minimize the difference between the diffused prediction
𝑌 and the observed diffusion 𝑌 . At last, the source node vector 𝑋0 is
ransformed into the predicted target vector 𝑋̂ within a few epochs.
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Fig. 2. The proposed model PGSL consists of three stages. The uncertainty modeling stage and propagation patterns learning stage construct the probabilistic graph diffusion model,
and the source nodes inference stage infers sources from diffused observations. The solid boxes represent data source and model components, while the dashed box represents
model data flow.
4.2. Modeling uncertainty of diffusion sources

The localization problem of the diffusion sources can be framed as
a Maximum A Posterior (MAP) estimation problem. To this end, we
decompose the conditional probability 𝑝(𝑋|𝑌 ,𝐺) into two components,
given by:

argmax
𝑋

𝑝(𝑋|𝑌 ,𝐺) = argmax
𝑋

𝑝(𝑌 |𝑋,𝐺) ⋅ 𝑝(𝑋). (6)

Estimating the distribution of the diffusion source nodes 𝑝(𝑋) is difficult
according to Eq. (6). To circumvent this problem, we propose to reduce
the dimensionality of 𝑋 to a latent variable 𝑍 in a low-dimensional
space, which can be done with low computational cost. However, using
plain auto-encoders to directly map the diffusion source node vector
𝑋 in a deterministic learning way does not fulfill the requirement of
measuring the uncertainty in source localization. In most of the graph
diffusion cases, the latent variable 𝑍 is independent of the diffused
observation 𝑌 (Ling et al., 2022), thus we can separate the modeling of
the graph diffusion into two stages. In the first stage, we train a model
to measure the uncertainty of 𝑋; At the second stage, we model the
graph diffusion process refer to 𝑝(𝑌 |𝑋,𝐺).

4.2.1. The deep generative model
The variational inference offers a reliable mathematical framework

for addressing the uncertainty problem involving randomness, which
has inspired us to learn the uncertainty of source localization using
a probabilistic approach. To achieve this, We first leverage a deep
generative model (Kingma et al., 2019) to map the high-dimensional
𝑝(𝑋) into low-dimensional 𝑝(𝑍), where 𝑍 ∈ R𝑑 is the latent random
variable vector and 𝑑 ≪ |𝑉 |. Moreover, due to the rapid growth of
5

graph size in many real-world networks (e.g., social networks often
have tens of thousands of nodes, if not millions), the uncertainty
problem becomes complex and intricate under such circumstances, and
more exact inference and sampling techniques are needed for tackling
this problem. Thus, we capture the intrinsic uncertainty by estimating
the density of source nodes, aiming to learn a data-driven statistical
model to capture its dynamics. We exploit an invertible neural network
𝑓𝜃 following FFJORD flows (Grathwohl et al., 2019) in the generative
model to parameterize the distribution 𝑝(𝑋), which conducts a series
of smooth and invertible transformations between the latent variable
𝑍 and target 𝑋. The network 𝑓𝜃 considers a continuous transformation
from the latent state 𝑧(𝑡0) to 𝑧(𝑡1) as follows:

𝑧(𝑡1) = 𝑧(𝑡0) + ∫

𝑡1

𝑡0
𝑓𝜃(𝑧(𝑡), 𝑡)𝑑𝑡, (7)

log 𝑝(𝑧(𝑡1)) = log 𝑝(𝑧(𝑡0)) − ∫

𝑡1

𝑡0
Tr

(

𝜕𝑓𝜃
𝜕𝑧(𝑡)

)

𝑑𝑡, (8)

this integration can be solved by ODE solvers (Chen et al., 2018).

4.2.2. Objective function
During the generating process, we have the following conditional

probability:

𝑝(𝑋̂re|𝑋,𝐺) = 𝑝(𝑋̂re|𝑍)𝑝(𝑍|𝑋,𝐺), (9)

where the posterior 𝑝(𝑍|𝑋,𝐺) can be used to infer the latent vari-
able 𝑍, but 𝑝(𝑋) is intractable. We instead approximate the poste-
rior 𝑞𝜃(𝑍|𝑋,𝐺) parameterized by 𝜃, then the likelihood 𝑝(𝑋,𝐺|𝑍)
can be obtained through calculating the Kullback–Leibler (KL) diver-
gence between 𝑝(𝑍|𝑋,𝐺) and 𝑞 (𝑍|𝑋,𝐺). The approximated posterior
𝜃
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Algorithm 1 Modeling Uncertainty of Source Localization
Input: Source node vector 𝑋 ∈ R|𝑉 |, invertible transformation 𝑓 , start time
𝑡0, stop time 𝑡1, Hutchinson’s estimator H, predetermined ODE solver Int𝑜𝑑𝑒.
function 𝑓𝑎𝑢𝑔([𝑧(𝑡), 𝑋], 𝑡)

Tr ← −H(𝑓−1, 𝑧(𝑡));
return [𝑓𝑡,Tr];

end function
while not convergent do

𝐻0 ← FC(𝑋); ⊳ Reduce input dimension with FC layers
[𝑧(𝑡0),Tr] ← Int𝑜𝑑𝑒(𝑓𝑎𝑢𝑔 , [𝑧(𝑡1), 0], 𝑡0, 𝑡1);
log 𝑝(𝑧(𝑡1)) ← log 𝑝(𝑧(𝑡0)) − Tr;
𝐻1 ← 𝑓−1(𝑍);
𝑋̂re ← FC(𝐻1);
Minimize 𝑈𝑆𝐿 via gradient descent optimizer;
Update parameters 𝜃;

end while

𝑞𝜃(𝑍|𝑋,𝐺) can be obtained by minimizing the KL divergence:

𝜃(𝑍|𝑋,𝐺) = min
𝜃

DKL
[

𝑞𝜃(𝑍|𝑋,𝐺) ∥ 𝑝(𝑋,𝐺,𝑍)
]

. (10)

Because of the intractable joint distribution 𝑝(𝑋, 𝑌 ,𝐺), we approximate
the posterior 𝑞𝜃(𝑍|𝑋,𝐺) by maximizing the Evidence Lower Bound
(ELBO), which reduces the computational cost rather than directly
calculating the KL-divergency:

ELBO = E𝑞𝜃

[

log 𝑝(𝑋,𝐺,𝑍) − log 𝑞𝜃(𝑍|𝑋,𝐺)
]

, (11)

where E𝑞𝜃 denotes E𝑞𝜃 (𝑍|𝑋,𝐺) for simplicity.
Then we can minimize the KL divergence between the 𝑞𝜃(𝑍|𝑋,𝐺)

and 𝑝(𝑍|𝑋,𝐺) by optimizing the negative ELBO via Jensen’s inequality,
he loss function 𝑈𝑆𝐿 can be described as:

𝑈𝑆𝐿 =min
𝜃
[−E𝑞𝜃

[

log 𝑝𝜃(𝑋,𝐺|𝑍)
]

(12)

+ DKL
[

𝑞𝜃(𝑍|𝑋) ∥ 𝑝(𝑍)
]

(13)

− E𝑞𝜃

[

∫

𝑡1

𝑡0
Tr

(

𝜕𝑓𝜃
𝜕𝑧(𝑡)

)

𝑑𝑡

]

]. (14)

In practice, we build a bijector 𝜃 with FFJORD flows and fully-
connected (FC) layers to reduce the input dimension. The bijector
has two directions, and −1

𝜃 denotes the inverse direction when we
map 𝑍 back to 𝑋. To overcome the issue of imbalance, we use the
variant cross-entropy loss for the calculation of the reconstruction loss
log 𝑝𝜃(𝑋,𝐺|𝑍). The training procedure of uncertainty modeling for
graph source localization is depicted in Algorithm 1.

4.3. Learning information propagation patterns

In the second stage, we simulate the graph diffusion process using
a GNN-based model. Specifically, according to Eq. (1), the posterior
𝑝(𝑌 |𝑋,𝐺) denotes the forward process of the problem which should be
maximized together with the uncertainty modeling process. In order to
maintain the same form as other items in Eq. (12), we calculate the
negative log of 𝑝𝜙(𝑌 |𝑋,𝐺) with GNN-based method parameterized by
𝜙. The loss function is defined as:

𝐼𝑃 = min
𝜙

{− log 𝑝𝜙(𝑌 |𝑋,𝐺)}. (15)

In addition to optimizing the graph diffusion process, a monotone
increasing constraint on the diffusion is required, which means that if
one source set 𝑋𝑖 is a subset of another source set 𝑋𝑗 , the probability
of each node being infected 𝑝inf(𝑋𝑖) from the source set 𝑋𝑖 should be
smaller than source set 𝑋𝑗 . This constraint is described as follows:

∀ 𝑋 ⊆ 𝑋 , s. t. 𝑝 (𝑋 ) ≤ 𝑝 (𝑋 ). (16)
6

𝑖 𝑗 inf 𝑖 inf 𝑗 𝑋
Algorithm 2 Learning Information Propagation Patterns

Input: Reconstructed source node vector 𝑋̂re ∈ R|𝑉 |; Graph adjacency matrix
𝐴 ∈ R|𝑉 |×|𝑉 |; GNN-based method; Iterations for constructing input feature
𝑛𝑓𝑒𝑎𝑡.
while not convergent do

for 𝑖 = 0… 𝑛𝑓𝑒𝑎𝑡 do
𝑋𝑖 ← 𝐴 ⋅ 𝑋̂re

end for
𝑌 ← 𝐺𝑁𝑁𝜙(𝑋𝑛)
Minimize 𝐼𝑃 via gradient descent optimizer;
Update parameters 𝜙;

end while

However, it is difficult to model the inequality constraints directly. We
convert the constraint Eq. (16) into a Lagrangian form as follows:

Cmono = 𝜆‖max{0, 𝑝inf(𝑋𝑖) − 𝑝inf(𝑋𝑗 )}‖22,∀ 𝑋𝑖 ⊆ 𝑋𝑗 , (17)

where 𝜆 is the regularization hyperparameter. Then the loss function is
defined as:

𝐼𝑃 = min
𝜙

{− log 𝑝𝜙(𝑌 |𝑋,𝐺)}. (18)

In practice,we calculate the forward loss log 𝑝𝜙(𝑌 |𝑋,𝐺) with Mean
Square Entropy loss. The training procedure of learning information
propagation patterns is depicted in Algorithm 2.

At last, combining Eqs. (12) and (15) together, we minimize the
negative ELBO with the monotone constraint in Eq. (17):

train =min
𝜃,𝜙

{

−E𝑞𝜃

[

log 𝑝𝜙(𝑌 |𝑋,𝐺) + log 𝑝𝜃(𝑋|𝑍)
]

(19)

+ DKL
[

𝑞𝜃(𝑍|𝑋) ∥ 𝑝(𝑍)
]

+ Cmono (20)

− E𝑞𝜃

[

log 𝑝(𝑧(𝑡0)) − log 𝑝(𝑧(𝑡1))
] }

. (21)

4.4. Source nodes inference

Since the distribution 𝑝(𝑋) is modeled by 𝑝(𝑍) after training, we
can solve the MAP in Eq. (1) via 𝑝(𝑋) = 𝑝(𝑋|𝑍)𝑝(𝑍). However, due
o the computational complexity of sampling 𝑍 from 𝑝(𝑍), we propose
o sample 𝑍 from the posterior 𝑞(𝑍|𝑋). The objective function of the
nference phase is defined as:

infer = min
𝑋

{− log 𝑝𝜙(𝑌 |𝑋,𝐺) − log[𝑝𝜃(𝑋|𝑍)𝑞𝜃(𝑍|𝑋̃)]}, (22)

here 𝑋̃ is the source node vector from the training data.
We sample an initial diffusion source 𝑋0 from a binomial distri-

ution in which the probability 𝑝𝐵 is set to 0.5 (Ling et al., 2022):

0 ∼ (|𝑉 | , 𝑝𝐵). (23)

owever, randomly initializing the input 𝑋0 will increase the search
pace during the optimization. We leverage the prior knowledge of
he observed diffusion source 𝑋̃ by using the mean of latent variables
btained from diffusion sources in the training set.

̃ = 1
𝑁

𝑞𝜃(𝑍|𝑋̃). (24)

The objective function is then defined as:

𝑋0 = min
𝑥

[

− log 𝑝𝜙(𝑌 |𝑋,𝐺) − log 𝑝𝜃(𝑋|𝑍̃)
]

. (25)

For the purpose of minimizing the objective function, we should
maximize both 𝑝𝜙(𝑌 |𝑋,𝐺) and 𝑝𝜃(𝑋|𝑍̃). For maximizing 𝑝𝜙(𝑌 |𝑋,𝐺), we
hoose to measure mean squared error ‖𝑌 − 𝑌 ‖22 between the ground
ruth 𝑌 and the prediction 𝑌 = 𝑝𝜙(𝑌 |𝑋,𝐺). For maximizing 𝑝𝜃(𝑋|𝑍̃),
e leverage the maximum likelihood estimation (MLE) method. Since

|𝑉 |
∈ {0, 1} , we can consider the mapping of 𝑍 to 𝑋 as a multilabel
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Table 2
Dataset statistics.

Jazz Network Science Cora-ML Power Grid Weibo-60k Twitter-20k

# Nodes 198 1589 2810 4941 63,433 26,382
# Edges 2742 13,532 7981 6549 70,102 33,242
Avg degree 27.7 17.29 5.68 2.67 2.21 2.52
Graph density 0.1406 0.0022 0.0020 0.0005 0.00003 0.0010
Assortativity Coef. 0.0202 0.4616 −0.0766 0.0035 −0.6256 −0.5641
Transitivity 0.5203 0.6934 0.1143 0.1032 0.00061 0.00006
Fig. 3. Distributions of the infected nodes for six datasets.
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Algorithm 3 Overall Framework of PGSL
Input: Graph adjacency matrix 𝐴 ∈ R|𝑉 |×|𝑉 |; The diffused observations
𝑌 ∈ R|𝑉 |; NF bijector 𝜃 parameterized by 𝜃; GNN-based forward model
parameterized by 𝜙; Iterations for inference phase 𝑛inf.
utput: The predicted diffusion source 𝑋̂ ∈ R|𝑉 |.
while not convergent do

𝑍 ← 𝜃(𝑋); ⊳ Obtain latent variables
Sample 𝑍𝑡 from standard normal distribution  (0, 1);
𝑋̂re ← −1

𝜃 (𝑍𝑡); ⊳ Obtain reconstructed sources
𝑌 ← 𝐺𝑁𝑁𝜙(𝑋̂re, 𝐴); ⊳ Obtain diffused predictions
Minimize train via gradient descent optimizer;
Update parameters 𝜃 and 𝜙;

end while
for 𝑖 = 0… 𝑛inf do

Sample 𝑋0 from binomial distribution (|𝑉 |, 0.5);
Optimize 𝑋0 through Eq. (25) via gradient descent;
Minimize infer; ⊳ Obtain optimized sources 𝑋opt

end for
𝑋̂ ← 𝑋opt;

classification problem, where the label is {0, 1} with |𝑉 | categories.
hen the loss function can be converted to:

MLE =
𝑁
∑

𝑖=1

|𝑉 |

∏

𝑗=1
[−1

𝜃 (𝑧𝑖,𝑗 )]𝑥𝑖 [1 − −1
𝜃 (𝑧𝑖,𝑗 )](1−𝑥𝑖), (26)

where −1
𝜃 is the inverse of FFJORD bijector. Thus we can derivate

Eq. (22) into:

infer = min
𝑋

{‖𝑌 − 𝑌 ‖22 − logmle}. (27)

To obtain valid source values, we discretize the continuous values
using a threshold 𝜏 and update the initial diffusion source vector 𝑋0.
The updated vector is fed into the forward model to obtain the diffused
prediction 𝑌 . In this process, we optimize the value of 𝑋0 using Eq. (22)
nd the diffused observation 𝑌 .

The overall framework of PGSL, which combines uncertainty mod-
ling of source localization, information propagation pattern learning,
nd source node inference, is illustrated in Algorithm 3.
7

. Experiment

We present the results of our experiments on graph source localiza-
ion, starting with a description of our experimental setup, including
ata, baselines, metrics, and implementation details. We then compare
ur proposed model with baselines on both synthetic and real-world
cenarios. In addition, we provide ablation studies and model analyses
o better understand the performance of our approach.

.1. Experimental settings

.1.1. Datasets
Four synthetic datasets and two real-world diffusion datasets are

elected to evaluate the performance of our model as well as base-
ines. The basic statistics and distributions of datasets are presented
n Table 2, Figs. 3–7. For four synthetic datasets (Jazz, Network Sci-
nce, Cora-ML, and Power Grid), where we had only graph topology
nformation, we randomly chose 10% of nodes as sources and simulate
he graph diffusion based on the SI or SIR propagations with suffi-
ient iterations. For the remaining two real-world datasets (Weibo-60k
nd Twitter-20k), we sample 10% and 4% nodes, respectively. Their
ssociated diffusion paths are also included. The source and infected
odes were determined based on observation time. We do not use any
pecial node features for the purpose of generalization. Using certain
ode features – such as number of followers, user attributes, or post
exts – may improve model’s performance, but their effectivenesses are
ependent on certain types of networks and in this work we mainly
ocus on network structures and diffusion uncertainties. The overall
atio of the training set and test set is 9:1. Specifically, we select
iffusion cascade with a similar number of source nodes from all valid
iffusions from original Weibo and Twitter datasets to build a sub-
raph. The number of source nodes was determined using half an hour
nd one day as observation times for the Weibo and Twitter datasets,
espectively. The nodes that had propagated during the observation
ime were considered as source nodes.

• Jazz (Gleiser & Danon, 2003): A collaboration network of Jazz
bands.
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Fig. 4. Node degree distribution.
Fig. 5. Node closeness centrality. Darker node color indicates higher closeness centrality.
Fig. 6. The infection probability matrix of the nodes in Jazz dataset. Lighter nodes indicate their infection probabilities are around 0.5, with greater uncertainties during information
diffusion.
Fig. 7. The distribution of node infection rate. The errorbars indicate confidence intervals for the likelihood of infection. We only show nodes with non-zero infection rate.
• Network Science (NS) (Newman, 2006): A coauthor network of
scientists working on network theory.

• Cora-ML (CML) (McCallum, Nigam, Rennie, & Seymore, 2000): A
citation network contains computer science research papers.

• Power Grid (PG) (Watts & Strogatz, 1998): A topology network of
the Western States Power Grid in the US.

• Weibo (Xu et al., 2021): A social network from Weibo, which is
formed by user following relationships.

• Twitter (Weng, Menczer, & Ahn, 2013): A social network from
Twitter containing public English-written tweets published be-
tween Mar 24 and Apr 25, 2012.
8

5.1.2. Baselines
We use five strong source localization models as the baselines, in-

cluding LPSI (Wang et al., 2017), GCNSI (Dong et al., 2019), OJC (Zhu,
Chen, & Ying, 2017), NetSleuth (Prakash et al., 2012), and SL-VAE
(Ling et al., 2022), and each is outlined as follows:

• LPSI (Wang et al., 2017): Label propagation based source identifi-
cation model, which predicts the rumor sources without knowing
the underlying information propagation model.

• GCNSI (Dong et al., 2019): GCN-based source identification
model, which is a deep-learning based method with GCN layers



Expert Systems With Applications 238 (2024) 122028X. Xu et al.

T
a
d

5

O
A
t
X
G
T
t
t
2
P
3
a

5

u
s
d

5

a
c
l
d
i
p
r
r
m
l

d
p
l
s

to learn latent node embeddings for identifying multiple rumor
sources.

• NetSleuth (Prakash et al., 2012): NetSleuth identifies the best set
of sources via the minimum description length principle. It is
designed for the SI diffusion.

• OJC (Zhu et al., 2017): OJC locates sources with partial observa-
tions by using a candidate selection algorithm.

• SL-VAE (Ling et al., 2022): The first probabilistic approach use
VAEs to tackle the ill-posed source localization problem.

5.1.3. Metrics
We use Precision, Recall, F1-Score, and AUC to evaluate the perfor-

mance of PGSL. We first define the following terms. True Positive (TP):
number of source nodes that correctly predicted. True Negative (FP):
number of non-source nodes that correctly predicted. False Positive
(FP): number of non-source nodes that incorrectly predicted as source
node. False Negative (FN): number of source nodes that incorrectly
predicted as non-source node. Then Precision, Recall, and F1-Score can
be defined as:

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃 )
• 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁)
• 𝐹1 = 2𝑇𝑃∕(2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)

he Area Under the Receiver Operating Characteristics Curve (AUC) is
nother important metric to evaluate a classifier and is less sensitive to
ata imbalance.

.1.4. Implementation details
We utilized a 2-layer fully-connected (FC) layer and 3-layer neural

DE functions to implement the NF bijector with ‘‘dopri5’’ ODE solver.
s for the GNN model, we chose the base models from several state-of-

he-art information propagation methods (Ko, Lee, Shin, & Park, 2020;
ia et al., 2021): Graph Attention Network (GAT), GCN, and simple
NN. For all three GNN models, we set the hidden unit size to 128.
he GAT model has two attention heads. We use dropout in FC layers
o avoid overfitting issue and the dropout rate is set to 0.5. The overall
raining learning rate was set to 1𝑒−3, and the number of epochs is
00 for all datasets. All the experiments were performed on Intel Xeon
latinum 8124M machine equipped with one NVIDIA GeForce RTX
090 and 128 GB of memory. We implemented PGSL using PyTorch
nd trained it with Adam optimizer.

.2. Evaluations

The evaluations are performed under two settings, i.e., propagation
nder synthetic diffusion (SI and SIR) and under real-world diffu-
ion. The advantages and limitations of our proposed PGSL are also
iscussed.

.2.1. Performance under synthetic diffusion
Tables 3 and 4 show the comparison results between our model

nd baselines under SI and SIR diffusion algorithms, respectively. We
an see that our model significantly outperformed most of the source
ocalization baselines (except SL-VAE) in terms of all metrics on all
atasets. Moreover, all five baselines exhibited inferior performance
n SIR diffusion compared to SI, owing to the more complex diffusion
rocesses of the SIR. In contrast, the performance of our model is
obust in both situations. However, we found that our model performed
elatively poorer on the Jazz and NS datasets in comparison to SL-VAE
odel. There are several potential reasons that degenerate our model’s

earning ability on certain datasets.
First, the sizes of Jazz and NS are significantly smaller than other

atasets. Since the performance of our model is largely driven by the
roposed NF and GNN modules that rely on more training instances and
arger network sizes, such small networks may not be able to provide
ufficient diffusion patterns for our model to capture data distributions
9

Table 3
Performance comparison under SI diffusion.

Model Metric Data

Jazz NS CML PG

LPSI

PR 0.105 0.423 0.155 0.454
RE 0.478 0.604 0.595 0.495
F1 0.171 0.497 0.246 0.473
AUC 0.484 0.837 0.667 0.933

GCNSI

PR 0.158 0.137 0.118 0.141
RE 0.436 0.224 0.361 0.347
F1 0.232 0.171 0.178 0.209
AUC 0.642 0.475 0.538 0.504

OJC

PR 0.101 0.204 0.104 0.371
RE 0.180 0.224 0.287 0.123
F1 0.129 0.213 0.153 0.185
AUC 0.505 0.563 0.501 0.533

NetSleuth

PR 0.109 0.265 0.498 0.328
RE 0.132 0.265 0.597 0.395
F1 0.119 0.265 0.543 0.359
AUC 0.543 0.469 0.765 0.653

SL-VAE

PR 0.719 0.599 0.571 0.589
RE 0.947 0.935 0.899 0.932
F1 0.818 0.729 0.697 0.721
AUC 0.978 0.949 0.941 0.944

PGSL

PR 0.490 0.591 0.611 0.591
RE 0.778 0.950 0.956 0.963
F1 0.600 0.727 0.744 0.731
AUC 0.886 0.944 0.948 0.953

Table 4
Performance comparison under SIR diffusion.

Model Metric Data

Jazz NS CML PG

LPSI

PR 0.115 0.136 0.107 0.486
RE 0.363 0.432 0.477 0.472
F1 0.169 0.207 0.175 0.478
AUC 0.501 0.561 0.498 0.582

GCNSI

PR 0.141 0.104 0.115 0.113
RE 0.373 0.351 0.338 0.237
F1 0.205 0.161 0.172 0.153
AUC 0.641 0.543 0.532 0.503

OJC

PR 0.154 0.141 0.141 0.398
RE 0.220 0.168 0.168 0.123
F1 0.181 0.154 0.154 0.180
AUC 0.501 0.511 0.501 0.510

SL-VAE

PR 0.503 0.571 0.582 0.580
RE 0.787 0.942 0.919 0.933
F1 0.613 0.709 0.711 0.714
AUC 0.789 0.951 0.930 0.947

PGSL

PR 0.490 0.573 0.610 0.603
RE 0.778 0.937 0.946 0.944
F1 0.600 0.710 0.741 0.734
AUC 0.873 0.943 0.943 0.952

and diffusion structures. This is also reflected in the better performance
results seen on larger networks such as CML, PG, Twitter and Weibo.

Second, our model is more suitable for handling complex propa-
gation protocols given the powerful learning abilities of the proposed
probabilistic framework using normalizing flows with invertible trans-
formations and graph neural networks. This is demonstrated by the
better performance of our model under the SIR diffusion, where all
baselines’ performances are decreased. Given the above discussions,
we suggest using PGSL for larger networks with complex diffusion
patterns.

5.2.2. Performance under real-world diffusion
We now evaluate the performance of our model and baselines under

the real-world information diffusion setting. The comparison results on
Weibo and Twitter datasets are shown in Table 5. The results indicate
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Fig. 8. Parameter analysis of PGSL on CML dataset (SI).
Fig. 9. Convergence analysis of PGSL on CML dataset (SI).

Table 5
Performance comparison under real-world diffusion.

Data Metric Model

LPSI GCNSI SL-VAE PGSL

Weibo

PR 0.101 0.009 0.112 0.386
RE 0.008 0.007 0.011 0.073
F1 0.013 0.008 0.010 0.061
AUC 0.499 0.501 0.501 0.533

Twitter

PR 0.103 0.112 0.134 0.417
RE 0.009 0.011 0.013 0.088
F1 0.015 0.024 0.024 0.142
AUC 0.496 0.509 0.504 0.586

that all models experienced a drop in performance, mainly due to
the complexity of underlying diffusion patterns in the real world and
the classification imbalance that arises from the increasing graph size.
Despite this, PGSL significantly outperformed SL-VAE, suggesting that
VAEs may not sufficiently model the uncertainty of diffusion sources
in real-world datasets. The improvement verifies our motivation to
integrate normalizing flows with invertible transformations to explic-
itly handle the uncertainty of the diffusion process. Additionally, the
varying number of sources in each instance of the real-world datasets,
caused by different lengths of the diffusion cascades, is distinct from
the synthetic datasets (which has a fixed rate of the sources), resulting
in a significant performance drop compared to the results of models on
synthetic datasets.

5.3. Parameter analysis

To investigate the significance of hyperparameters in PGSL, we
experimented with different parameter values to analyze their impacts
on model performance. The results are shown in Fig. 8.

5.3.1. Latent space dimension
The dimension of latent space (z-dim) in NF bijector determines

the space size when generating the source nodes. We set the z-dim
in NF bijector to [2, 8, 16, 32, 64, 128]. From Fig. 8(a) we can see
that the best performance is obtained when the z-dim is around 16–32.
10
The Precision changes smoothly while the Recall changes significantly
when z-dim varies from 2 to 128. Additionally, the error bands widen
when z-dim is either too small or too large. A z-dim of 16 is sufficient
to represent the latent features of sources distributions. Increasing the
z-dim results in a significant increase in parameters, leading to an
overfitting problem during model training.

5.3.2. Hidden unit size
The size of hidden units in the NF bijector is another important

hyperparameter in PGSL. We vary the size of hidden units from 64 to
1024, and the results are shown in Fig. 8(b). It can be observed that
PGSL achieved the best and worst performances when the hidden units
are set to 256 and 64, respectively. This result can be explained by
the fact that smaller hidden units cannot fully represent the features of
nodes in the graph.

5.3.3. GNN layer type
The type of GNN layers in the forward model affects the graph

learning capability of PGSL and may significantly influence the source
localization performance. We compare three types of GNN layers (sim-
ple GNN, GCN, and GAT), and the result is shown in Fig. 8(c). It can be
observed that all the metrics reach the best when GAT is used as base
of forward model and the worst for simple GNN. This result may be due
to the usage of attention mechanisms in GAT, which can learn diffusion
patterns more effectively. Additionally, this result suggests that PGSL is
flexible with various forward base models and can adapt to specific
diffusion patterns that can be captured by the graph neural networks.

5.3.4. Dropout rate and attention heads
We further investigate the effects of two important hyperparame-

ters: dropout rate and the number of attention heads in GAT. The results
on the NS dataset under SI diffusion are shown in Figs. 10 and 11. We
can observe that for dropout rate a value around 0.5 achieves the best
performance. For number of heads in GAT, we find that the value of this
hyperparameter has minimal influence on the model’s performance.

5.4. Convergence analysis

We now conduct convergence analysis of our model. We adopted co-
sine annealing method to control the learning rate of PGSL on different
learning rate settings from [5𝑒−2, 1𝑒−2, 1𝑒−3, 1𝑒−4, 1𝑒−5]. We compared
the changes of overall loss and 𝛥𝑙𝑜𝑔−𝑝𝑟𝑜𝑏 loss during training and the
results are shown in Figs. 9(a) and 9(b), respectively. In addition, we
adopted an early-stop strategy with 10 epochs of patience on each
model training to prevent overfitting.

As demonstrated in Fig. 9(a), we observe that for learning rate larger
than 1𝑒−4, the total loss decreases rapidly within the first five epochs,
and the training terminates between 30 to 50 epochs. However, when
the learning rate is set to 1𝑒−5, the loss curve declines much slower,
suggesting that the model may not converge when learning rate is too
small.
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Fig. 10. The effect of dropout rate for mitigating the overfitting issue on NS dataset
under SI diffusion.

Fig. 11. The effect of the number of attention heads in GAT on NS dataset under SI
iffusion.

As shown in Fig. 9(b), we can find that when the learning rate is
arger than 1𝑒−3, the 𝛥𝑙𝑜𝑔−𝑝𝑟𝑜𝑏 loss keeps increasing after the training
eaches a certain point. When the learning rate is set to 5𝑒−2, this
henomenon occurs again. These results indicate that the convergence
f neural ODEs is significantly affected by very high or very low
earning rates due to the stiffness of ODEs.

.5. Ablation study

The NF and GNN are two critical modules in our model. To in-
estigate their effects on the model performance, we conduct ablation
tudies and designed two variants of PGSL. Specifically, we remove
he NF layer in the NF bijector, which simplifies the model into a
lain autoencoder. We denote this variant as PGSL w/o NF. We also
eplace the GNN module with FC layers in the forward model, and
enote this variant as PGSL w/o GNN. The performance changes on
ix datasets under SI propagation or real-world diffusion (Weibo and
witter) are shown in Table 6. We have the following findings: (1)
he removal of any module within PGSL leads to a decline in perfor-
ance, demonstrating that both modules significantly contribute to the

verall efficacy of the model and both modules collaborate with each
ther in inferring the diffusion sources; (2) The performance drops of
GSL w/o NF can be attributed to the failure in effectively capturing
he uncertainties associated with the sources, which becomes more
pparent when the network size is larger, as in the Weibo and Twitter
atasets. (3) The aim of the GNN module is to learn node interactions
11

nd network structures, its usefulness is more significant for improving f
Table 6
Ablation study on six datasets under SI propagation.

Data Metric Model

w/o NF w/o GNN PGSL

Jazz

PR 0.496 0.527 0.547
RE 0.741 0.789 0.791
F1 0.593 0.631 0.645
AUC 0.837 0.866 0.883

NS

PR 0.575 0.559 0.591
RE 0.912 0.900 0.917
F1 0.718 0.688 0.718
AUC 0.927 0.917 0.947

CML

PR 0.588 0.591 0.596
RE 0.949 0.927 0.949
F1 0.725 0.721 0.731
AUC 0.943 0.932 0.944

PG

PR 0.581 0.591 0.593
RE 0.892 0.950 0.963
F1 0.703 0.729 0.731
AUC 0.915 0.943 0.953

Weibo

PR 0.326 0.374 0.386
RE 0.070 0.071 0.073
F1 0.055 0.059 0.061
AUC 0.516 0.528 0.533

Twitter

PR 0.397 0.414 0.417
RE 0.082 0.086 0.088
F1 0.136 0.141 0.142
AUC 0.571 0.573 0.586

Fig. 12. Running time comparison with different graph sizes.

the Recall metric. In other words, it aids in identifying as many sources
as possible. (4) The significance of NF and GNN modules varies across
different source localization datasets. In practical scenarios, their usage
should be tailored to the unique characteristics of individual datasets.
For instance, the PG and Twitter datasets exhibit less dependence
on network structures and are more susceptible to the uncertainties
associated with diffusion.

5.6. Model scalability

The overall complexity of GCNSI, as proven in Dong et al. (2019)
and Wang et al. (2017), is (𝑘 × 𝐷3), while the overall complexity of
PSI is (𝐷3), where 𝐷 is the dimension of the input sources (i.e., graph
ize), and 𝑘 is the number of layers in GCNSI. In contrast, SL-VAE
as linear run-time with the growth of graph size (Ling et al., 2022)
nd its complexity only depends on the complexity of the forward
odel. In PGSL, we leverage continuous normalizing flows, which

educes the overall complexity to ((𝐷 × 𝐻 + 𝐷)𝐿) (linear to the
graph size 𝐷) compared to other methods. We use the GAT model as
the forward model, whose complexity is (|𝑉 |) + (|𝐸|) with fixed

eature dimension and attention heads. Therefore, the complexity of
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PGSL is comparable to SL-VAE. We show the run-time of our model
and baselines with different numbers of nodes (5k, 10k, 30k, 60k) on
Weibo dataset in Fig. 12. It is observed that the run-times of PGSL and
SL-VAE increase linearly with the size of graph nodes, while LPSI and
GCNSI are not scalable to large graphs.

5.7. Limitation on real-world diffusion datasets

The real-world diffusions are much more complex than synthetic
diffusions, posing both internal and external correlations and interfer-
ences that influence the diffusion process. In our work, we utilized two
real-world diffusion datasets – Weibo and Twitter – constructed from
information cascades. We note that for these two real-world diffusion
datasets, we used merging operations on multi-sourced cascades to
ensure a balanced dataset.

For future improvements of multi source localization problem on
real-world diffusion cascades, we suggest the following directions. First,
randomly merging cascades did not take the relations between cascades
into consideration. Future efforts can be devoted to designing more
advanced ways of selecting cascades for constructing the diffusion
instances, e.g., clustering techniques. Second, researchers can propose
new methods for addressing the data imbalance issue (diffused vs.
entire graph) during the training and inference phases. Third, we
can decouple the entire underlying graph from identifying sources.
On the one hand, we can efficiently identify sources from the local
subgraph or node neighborhood. On the other hand, we can concentrate
on individual diffusions that accurately simulate the whole diffusion
process.

6. Conclusion

Localizing the sources of diffusions in graph is a challenging task
with a wide range of real-world applications. In this paper, we pro-
pose a novel probabilistic model PGSL, which addresses the inherent
uncertainty problem in inverse graph diffusion. PGSL uses continuous
normalizing flows to construct a reverse deep generative model, which
can generate expressive posteriors with smooth and invertible transfor-
mations to learn the intrinsic features of diffusion sources. Extensive
experiments conducted on synthetic datasets and real-world diffusion
datasets demonstrate the effectiveness of PGSL over strong baselines.

In the future, we plan to extend our model to incorporate other
features, such as texts or images, to enhance the performance of specific
applications. Moreover, the current model can only operate on static
graphs and with only the nodes’ states. Therefore, other types of graph
learning models should be considered to extend the model’s applicabil-
ity, such as heterogeneous information networks or dynamical graph
neural networks.
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