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Abstract—Prevailing embedding-based cross-domain recom-
mendation (CDR) techniques produce embeddings individually
or transfer the overall feature distribution from one domain
to another. However, in real-world applications, they might be
ineffective due to semantic gap across domains, which arises from
divergent purposes and descriptive styles. In this work, we aim
to address this challenge between Mini Program and content
channel in Alipay, the largest mobile payment platform in China.
To bridge utility-oriented Mini Programs and advertisement-
oriented contents, we utilize side information of entities to make
the entity relevance scores trustworthy. Then we introduce a
knowledge graph-based model to reduce the impact of embedding
vibrating from contrastive learning and the biases from the
pretrained language models. Extensive experiments conducted
on a large-scale Alipay offline dataset as well as an online
environment demonstrated the effectiveness of our proposed
framework.

Index Terms—Semantic relevance, relation extraction, knowl-
edge graph, mini program

I. INTRODUCTION

Mini Programs refer to lightweight applications integrated
within a super-app ecosystem, encompassing a range of hierar-
chical services offered by third-party merchants. For instance,
the Ctrip Mini Program on Alipay facilitates transportation
ticket booking and short trip or hotel reservations. Within
this ecosystem, the host of the Ctrip Mini Program may also
seize the opportunity to generate additional revenue through
advertising in the content channel. With respect to this gap, it
is worth noting that the user’s historical log of Mini Programs
reflects their practical needs, while the content log can serve
as a gauge of their expectations or intents. Specifically, it is
important to recognize that an individual’s booking history for
occasional business trips does not necessarily imply that they
are an avid traveler or enthusiast, and therefore recommending
local traveling vlogs to them may not effective.

To bridge this gap that may occur in cross-domain rec-
ommendation (CDR) scenarios, we take the first step by
formulating a Relevance Relation Extraction (RRE) problem
that aims to predict the semantic relevance scores between
Mini Program and content. From our empirical investigations,
we have identified three notable obstacles that hinder the
RRE performance on industrial-scale data. Accordingly, (1)

Pretrained language models (PLMs) and text-based knowledge
graphs (KGs) are prone to suffer from the isotropy problem [1]
that makes the scores less comparable across the entire graph;
(2) directly integrating the paradigm of traditional KG learning
methods [2], [3] would cause extra computational cost, and
additionally make the encoder model hard to converge; (3)
there exists a wealth of potentially valuable side information
linked to Mini Program or content in the super app, but they
are not exploited in the current process of learning entity
representations.

In this work, we propose a novel contrastive learning-based
knowledge graph completion (KGC) model for addressing the
aforementioned three obstacles in RRE problem. Specifically,

(1) With a dedicated bi-encoding KGC paradigm, our model
is able to generate interpretable relevance scores between
Mini Programs and content in Alipay’s ecosystem; (2) By
integrating topology side information and a more effective
contrastive learning-based method, our model is able to fix
the domain gap between entities; (3) We demonstrate the
effectiveness of the proposed model on a synthetic RRE
dataset and implement it in item-centric and user-centric online
recommendation tasks. A reference source code is released at
https://github.com/jkdxg8837/Relevance-Relation-Extraction.

II. DATA AND PROBLEM DEFINITION

Definition of Entities. In Alipay, Mini Program and content
are two important components in its ecosystem, one providing
services, and the other provides user- and merchant-generated
content. To be specific, Mini Program can be accessed via
links and cards in an article, user feed, QR code, search, live
streaming, or through a Mini Program Hub. Common types
of Mini Program include e-commerce, entertainment, news
media, financial, travel, and health services. In our model,
we represent Mini Programs by their titles and descriptions
provided by their creators. On the other hand, content refers to
articles and videos in Alipay’s Platform. Third-party merchants
can post articles to promote their products, while common
users can share their product reviews by creating blogs or
vlogs. We also represent content using the title and description
provided by its creators. If these are missing, we extract
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Fig. 1. An example of the relevance relation extraction problem between
Mini Program and content.

descriptions from key pages/frames of the content, with the
assistance of Document AI algorithms [4]. Furthermore, the
generated descriptions undergo a quality supervision process.

Definition of RRE problem. Given a knowledge graph G =
f(m; r; c) ⊆ Em×R×Ecg, where each triplet (m; r; c) consists
of a Mini Program entity m 2 Em, a content entity c 2 Ec,
and a symmetric relevance relation r 2 R between them.
The problem of RRE is to predict continuous relevance score
s(m; c) between Mini Programs and content in an incomplete
G. Fig. 1 shows an illustration of the RRE task.

Data Labeling. The Mini Program and its content possess
multiple attributes, including brand, intention, main describing
subject, localization and more. These attributes may be ex-
plicitly provided by the users, such as brand and localization,
or can be implicitly extracted from their descriptions, such
as intention and subject. We note that intention and subject
play crucial roles in determining the correlation between two
entities. For example, the Weak correlation, which serves as
the boundary between related and non-related, requires either
the intention, subject or localization to be the same or included.
Moderate correlation, which is a slightly stronger relationship
than weak correlation, necessitates all three components men-
tioned above to be connected, while the brands are generalized.
Strong correlation demands not only the same subject or
intention but also the same localization and related brand.

III. RELATE WORKS

Mini Program. The popularity of Mini Program in recent
years has gradually attracted the attention of researchers
and engineers in both academia and industry from different
perspectives such as business value, user experience, program
development & design, security and privacy [5]–[11]. For
example, [12] studied the pros and cons of Mini Program
compared to native apps and investigated the implications of
Mini Program to mobile application platforms.

Knowledge Acquisition. It aims to obtain new knowledge
via various KG representation learning, KG completion, and
relation extraction techniques [2]. Traditional embedding-
based methods such as TransE [13] and DistMult [14], focus
on determining appropriate representation spaces and scoring
functions for encoding entities and their relations. Text-based
methods are able to utilize entity descriptions for KG reason-
ing via PLMs and can be used for inductive KG tasks [15].

IV. METHODOLOGY

A. Model Architecture

Given a Mini Program m, a content c, and their relevance
relation type r, the RRE task can be seen as a knowledge
graph completion (KGC) problem [2] for completing triplet
(m; ?; c). Fig. 2 presents an overview of the framework.

The scoring function in traditional KG typically integrates
the embedding of relation r with m or c. However, it can incur
additional computational overhead: to obtain the relevance
score of a specific relation type, we need to combine every
kind of relation token with the head or tail entity. We propose
a new scoring function by removing the r in the input pair:

φ(m; r; c) = 1− jf(m; c)− g(r)j ; (1)
f(m; c) = (cos(hm;hc) + 1) =2; (2)

where f(·; ·) 2 [0; 1] is a scaled cosine similarity between L2

normalized representations hm and hc output by the BERT-
based encoders, and g(·) is a mapping function from relation
classes to the predefined relevance scores.

Given the distinctive characteristics of our RRE task, we
adopt a novel approach by assigning an encoder to encode
in-batch positive entities, while employing another to encode
in-batch negative entities, with a momentum update technique.
This new paradigm offers improved synergy with our newly
devised score function. The advantage of this approach lies in
its ability to not only generate high-quality negative samples
but also disentangle the cross-effects arising from the involve-
ment of the same entity playing both positive and negative
roles within a batch. The momentum updating function is
formally defined as follows:

ΘBERTneg  αΘBERTneg + (1− α)ΘBERTpos ; (3)
where Θ is the parameters of the encoder and α is a momen-
tum hyperparamter. At last, for a positive triplet (mi; ri; ci),
the contrastive loss Lcts,i [16] for optimizing the encoding
network is defined as:

− log
e(φ(mi,ri,ci)/τ)

eφ(mi,ri,ci)/τ +
∑jN j
j=1 e

φ(mi,ri,c
′
j)/τ

; (4)

B. Relevance Relation-Based Optimization

As we have mentioned before, descriptions from different
channels vary in style and purpose. We utilize a self-supervised
in-batch negative sampling strategy to fix the gap. Inspired
by Dual Softmax Loss (DSL) [17], we revise the contrastive
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Fig. 2. Framework overview for extracting relevance relations between Mini Program and content in a super app.

loss in Eq. (4) by constructing a prior normalized matrix
obtained by the Softmax operation on the columns of the
entity similarity matrix. Then we multiply the prior normalized
matrix with the original similarity matrix to highlight the
scores of the ground-truth pair and reduce the impact of
spurious correlations on our model. Revised contrastive loss
is then defined as:

L∗cts = − log
e(ψ(i,i)/τ)

eψ(i,i)/τ +
∑jN j
j=1 e

ψ(i,j)/τ
; (5)

 (i; j) = φ(mi; ri; ci) · Pi,j ; (6)

Pi,j =
e(η·φ(mi,rj ,cj))∑B
k=1 e

(η·φ(mk,rj ,cj))
; (7)

where Pi,j is entry of prior normalized matrix and η is a scale
hyperparameter to smooth gradients.

Furthermore, in order to align the predicted relevance score
with the labeled score from the mapping function, we adopt a
regression loss based on mean squared error (MSE), which is
defined as:

Lreg =
1

B
B∑
i=1

(f(mi; ci)− g(ri))
2
: (8)

C. Side Information Integration

Mini Programs and content in a super app are often as-
sociated with rich side information such as category, author,
and location. Therefore, we propose to learn entity structure
representations by constructing a large heterogeneous graph
(more dense than the knowledge graph G). The constructed
graph not only contains nodes of Mini Program and content but
also side information connected with them, which also exposes
implicit node correlations beyond first-order neighborhoods.
Specifically, we first utilize node2vec [18] to extract structure
representations for each node in the graph. Then we create
an MLP-based projection head to encode them. We fuse the
structure representations with their corresponding semantic
representations (output by the BERT-based encoders) via
self-attention layers. The fused entity representations contain

semantic-structural patterns that can be used for enhancing
RRE performance.

Overall, our proposed model is optimized by the following
loss:

L = Lcts + βL∗cts + γLreg; (9)

where β and γ are loss-balance hyperparameters.

V. EXPERIMENTS

Dataset. We construct a synthetic dataset for the RRE task,
which comprises 13k Mini Programs and 22k contents. Re-
garding the labeled relation triplets, we have 19k for the
“no correlation” class, 16k for “weak correlation”, 8k for
“moderate correlation”, and 9k for “strong correlation”.

The average sequence lengths of Mini Program and Content
are 54 and 282, respectively.
Baselines. We adopt embedding-based methods including
TransE [13], DisMult [14], ComplEx [19] and RotatE [20];
and text-based methods including KG-BERT [21], PrompKGC
[22] and SimKGC [23]. As baselines are not designed to
classify the relation between two entities, we also attach a
regression head after these models. With this design, the
confidence score of triplets can be granted the meaning of
relevance strength.
Metrics. We use Precision, Recall, Accuracy, and F1 score
to measure the relation classification performance and use
Pearson Correlation Coefficient (PCC) with MSE loss to
measure the regression performance.

A. Main Result

The main results of the RRE performance comparison are
shown in Table I, where we run each model five times and re-
port the mean and standard deviation. We can observe that our
proposed model significantly outperforms both embedding-
based and text-based baselines, in comparison with the best-
performed baseline SimKGC, we achieve an 11.76% improve-
ment in terms of F1 score. For other baselines, embedding-
based methods generally surpass text-based methods, which



TABLE I
RELEVANCE RELATION EXTRACTION PERFORMANCE COMPARISON BETWEEN OUR MODEL AND BASELINES.

Method Precision↑ Recall↑ F1↑ ACC↑ PCC↑ MSE↓

Embedding-based methods
TransE [13] 59.28±0.134 56.65±0.110 52.74±0.170 53.46±0.299 0.627±0.002 0.079±0.001

DistMult [14] 44.64±0.208 41.85±0.104 32.14±0.024 31.86±0.031 0.381±0.011 0.144±0.001

ComplEx [19] 37.38±1.209 35.39±2.228 28.04±1.266 27.60±1.033 0.281±0.028 0.160±0.008

RotatE [20] 42.86±0.303 45.68±0.324 41.47±0.401 43.76±0.478 0.329±0.011 0.160±0.003

Text-based methods
KG-BERT [21] 24.24±0.012 26.64±0.104 23.66±0.008 37.86±0.223 0.105±0.003 0.169±0.003

PromptKGC [22] 25.07±0.002 25.20±0.003 22.15±0.002 23.43±0.001 -0.007±0.001 0.226±0.001

SimKGC [23] 55.34±0.823 58.97±0.543 55.42±1.180 59.36±1.631 0.559±0.002 0.099±0.002

Ours 68.57±0.029 68.17±0.884 67.18±0.186 73.95±0.111 0.774±0.010 0.046±0.002
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Fig. 3. Ablation on encoding network design.
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Fig. 4. Ablation on side information and loss.

is in line with the observations in [23], [24] that the KGC
performance of text-based methods lags behind embedding-
based methods. SimKGC expands the number and types of
negatives in contrastive training and overtakes embedding-
based methods on KGC. Our model is built on top of SimKGC
with several new modules designed for the RRE task. In the
next subsection, we conduct an ablation study to quantify the
contribution of each module.
Ablation on Encoding Network. To demonstrate the effec-
tiveness of our designed momentum encoding network, we
test another three encoder architectures: (1) single means we
only use one encoder without momentum updating; (2) w/
projection indicates the inclusion of a projection head on
the single, demonstrating the impact of data augmentation;
Similarly, (3) w/o momentum means we adopt bi-encoders but
without momentum updating, allowing us to evaluate the effec-
tiveness of disconnecting the connection between the encoders.
The ablation result is shown in Fig. 3. It is evident that the
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Fig. 5. The distribution of predicted relevance scores colored by their rele-
vance classes of strong (0.9), moderate (0.7), weak (0.5), and no correlation
(0.1).

single model exhibits the lowest performance. The inclusion
of a projection head and the adoption of momentum updating
both contribute to improvements in the RRE performance. This
validates our underlying motivation to mitigate the detrimental
effects arising from the interaction between in-batch positive
and negative entities.

Ablation on side information and loss. We remove each
of the following modules in our model to ablate their unique
contributions to the performance, the result is shown in Fig. 4.
Incorporating side information and modeling their structures
can help us learn better entity representations. Both contrastive
losses contribute to the RRE performance, and combining
them yields even better results than using either individually.
The using of regression loss also slightly increases the perfor-
mance.

Analysis on Distribution of Relevance Score Fig. 5 plots the
relevance score distributions (of 6,680 test triplets) predicted
by our model and SimKGC. The scores are colored by their
ground-truth classes. We can clearly observe that our model
predicts much more accurate relevance scores (especially for
pairs of strong and no correlations) in which their distributions
fit well with the predefined scores.

Visualization. We use t-SNE to visualize the learned
semantic-structural representations in Fig. 6. We can see that
the entities with similar relevance scores or belonging to the
same category are clustered together.
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TABLE II
EXPERIMENT RESULTS IN DOWNSTREAM OFFLINE ITEM-CENTRIC

RECOMMENDATIONS

Method Recall Hit Precision NDCG

LightGCN 0.0125 0.0837 0.0073 0.0100
UltraGCN 0.0243 0.1157 0.0086 0.0104
BC-Lossraw 0.0297 0.1252 0.0109 0.0364

BC-Lossours 0.0328 0.1626 0.0260 0.0481

B. Offline and Online A/B Experiment

To demonstrate the effectiveness of our designed relevance
score, we conducted offline item-centric recommendation
and online user-centric recommendation experiments, which
showed that the proposed framework could provide a semantic
embedding extractor in a specific downstream scenario.
Offline item-centric recommendation experiment. To verify
the effectiveness of our semantic relevance score, we compare
it with other state-of-the-art recommendation methods [25],
[26] and convert them from user-centric to item-centric by
placing users with the Mini Programs and placing items with
the contents. In the offline recommendation experiment, we
used three months of user click behavior as training and
validation sets, and used one-week future user click behavior
as the test set. We constructed an offline item-centric recom-
mendation dataset based on the same rules as the one used
in BC-Loss [27]. After comparing with several commonly
used recommendation algorithms, we chose BC-Loss as the
baseline and integrated the relevance score we parsed into the
margin score in a reasonable way. The experimental results
showed that the integrated relevance score can alleviate the
popularity bias in the recommendation task and improve the
overall performance of the model.
Online recommendation experiment. We conducted the
online A/B testing on the homepage of Alipay for 7 days.
For policy reasons, we only publish improvements relative
to the base model. Compared to traditional semantic feature
extraction models that require extensive pre-training to adapt
to special styles of downstream semantics [28], or rely on
several models to work together to complete the semantic
feature extraction and fusion, our model is trained via a semi-
supervised learning approach with lower costs. The chosen

Fig. 7. Online CTRs performance during 7 days.

metric is click-through rate (CTR). The results of the 7-day
A/B test with 5% of user flow are shown in Fig. 7.

VI. CONCLUSION

Mini Programs have more than hundreds of millions of
monthly active users. Understanding the semantics of Mini
Program and content as well as their correlations in a super app
is challenging and still under-explored. We take the first step
to formulate relevance relation extraction as a KGC problem
and propose a text-based contrastive learning framework to
learn relevance-guided entity representations. We design a
momentum encoding network with a new relevance scoring
function and two optimization losses. We also incorporate
rich side information associated with the Mini Program and
content to enhance semantic representation learning. Extensive
experiments showed the effectiveness of our framework in both
relevance score extraction and cross-domain recommendation.
In our future work, we aim to incorporate multimodal informa-
tion and explore modeling techniques for interactions among
various entities within the super app ecosystem. Specifically,
we plan to investigate the relationships between Mini Pro-
grams and coupons, along with other entities.
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