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Abstract—Information cascade popularity prediction is an im-
portant problem in social network content diffusion analysis. Vari-
ous facets have been investigated (e.g., diffusion structures and pat-
terns, user influence) and, recently, deep learning models based on
sequential architecture and graph neural network (GNN) have been
leveraged. However, despite the improvements attained in predict-
ing the future popularity, these methodologies fail to capture two
essential aspects inherent to information diffusion: (1) the temporal
irregularity of cascade event – i.e., users’ re-tweetings at random
and non-periodic time instants; and (2) the inherent uncertainty of
the information diffusion. To address these challenges, in this work,
we present CasDO – a novel framework for information cascade
popularity prediction with probabilistic diffusion models and neu-
ral ordinary differential equations (ODEs). We devise a temporal
ODE network to generalize the discrete state transitions in RNNs to
continuous-time dynamics. CasDO introduces a probabilistic dif-
fusion model to consider the uncertainties in information diffusion
by injecting noises in the forwarding process and reconstructing
cascade embedding in the reversing process. Extensive experiments
that we conducted on three large-scale datasets demonstrate the
advantages of the CasDO model over baselines.

Index Terms—Information cascade, neural ordinary equations,
popularity prediction, probabilistic diffusion.

I. INTRODUCTION

THE booming use of social media platforms such as Twitter,
Sina Weibo, Facebook, etc., has positioned the online con-

tent generated and disseminated by the users to become one of
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the main sources of information to guide many of the individuals’
everyday decisions [1], [2]. The dynamics of users activities
facilitate the fast propagation of information and, in turn, bring
the important aspect of information cascades [1], [3]. A similar
phenomenon has been identified in other (non-social media)
settings: paper citations [4], blogging space [5], and article
sharing [6]. Understanding information cascades has significant
economic and societal impacts – and one of the typical tasks,
which has attracted great attention in the both academia and
industry, is the prediction of the size of potentially affected users
after a certain time [7]. For example, predicting the number of
affected cases and deaths in a region during the COVID-19 pan-
demic [8] based on users tweets, is critical for policymakers to
plan subsequent actions and resources allocation. However, the
process of information diffusion has a high level of stochasticity,
which makes the prediction task a challenging one.

Over the years, many research efforts have been devoted to
information cascade popularity prediction [1]. The works have
analyzed the patterns of information diffusion and proposed
various popularity prediction approaches. In a broad sense, these
approaches can be categorized into three groups. (1) Diffusion
model-based approaches: these researches focus on modeling
the intensity functions of the arrival for incoming messages
to study the propagation process [9]. (2) Feature model-based
approaches: most of the earlier studies [7] try to exploit useful
hand-crafted feature-sets from cascade items, e.g., time-series,
diffusion structure, and contents. (3) Deep learning-based ap-
proaches: these methods have achieved great successes for many
applications and have been extensively applied in information
dissemination learning and cascade popularity prediction [3],
[10], [11]. Existing works utilize various deep neural network
models towards capturing the temporal and sequential pro-
cesses of information diffusion using recurrent neural networks
(RNNs) [12], learning structured representations with network
embedding models [3] or graph neural networks (GNNs) [13],
and predicting individual user activity (e.g., forwarding or
not) [14].

Challenges: Despite the success of existing deep learning-
based methods, some challenges remain unaddressed and poten-
tial improvements are still possible. The real-world information
diffusion processes are often irregularly sampled (i.e., the time
series of different users activities are non-uniform) and exhibit
noise as well as uncertainty – aspects which have not been
properly modeled in the previous works. Specifically, following
the observations along these lines which motivate our work: (1)
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Irregularly-sampled information diffusion process. Since people
have their personal preferences and timetable in real life, they
may browse tweets/microblogs and retweet them at different
times. This is also the case for other types of networks, such
as paper citations. The time intervals between adjacent events
(e.g., retweeting and citation) are irregular. RNNs such as LSTM
and GRU are the dominant models for capturing the tempo-
ral patterns of the information diffusion, which, however, are
initially designed for regularly-sampled sequences and cannot
reflect the influence of irregular events due to the underlying
inflexible iterative structure [15]. (2) Information diffusion evo-
lution uncertainty. Generally, information cascade prediction
aims to predict future popularity by peeking into the early
stage of a cascade’s evolving process. However, the observed
sharing/retweeting behaviors would inevitably introduce noises,
biases, and uncertainties, which have not been well considered
in existing methods. For example, many fake followers and spam
accounts exist in social platforms, affecting other users’ behav-
iors and, consequently, the diffusion process while introducing
propagation uncertainty.

Nevertheless, it is non-trivial to model the irregularly-sampled
diffusion process and incorporate the uncertainty in diffusion
evolution, and there still exist two major limits: (L1) We argue
that effective exploration of this uncertainty can be realized by
estimating it from the perspective of underlying distributions.
However, learning the underlying distribution for the structure
of information diffusion while incorporating uncertainties from
historical user retweets poses a challenge for existing genera-
tive models (i.e., GAN [16] and VAE [17]). On the one hand,
although current generative models can generate the distribution
in a sequence-to-sequence manner [18], [19], they still face
instability during optimization [16] and posterior collapse is-
sues [17]. On the other hand, no existing methods are able to
capture uncertainties during information diffusion process from
different perspectives within a unified framework. (L2) Previous
studies [11], [20] typically assume discrete and equal time
intervals for user re-sharing behaviors. However, this approach
primarily focuses on the order or position of users within the
information diffusion process, thereby restricting their ability
to effectively capture and express temporal information. While
some works [21] also notice the significance of time span, their
models either struggle to capture time differences between past
interactions or lack the ability to generalize across various time
differences. Hence, the modeling of irregularly-sampled diffu-
sion processes remains under-explored in the field of information
cascade popularity prediction.

Present work: To address the mentioned challenges, we
present a novel information Cascade popularity prediction
model based on probabilistic Diffusion model [22] and neural
Ordinary differential equations [23] (CasDO). Specifically, the
diffusion model’s process of injecting noise into the target and
then reconstructing the original distribution through denoising
allows the model to better capture uncertainties by predicting
noise. We devise a novel temporal neural ODE network (T-
ODE) that generalizes discrete state transitions to continuous-
time dynamics of the information cascade. It allows us to bet-
ter match the real information propagation, obeying an ODE
between successive observations to possess continuous hidden

states. Once a new event occurs, the state will be updated by
a gating mechanism, which jointly considers the new input
and the temporal interval. In addition, CasDO can capture the
uncertainties associated with information cascades by integrat-
ing the probabilistic diffusion models and the latent ODEs. In
particular, we train CasDO by injecting noises into the stochas-
tic hidden layers with a regularizer encouraging the injection
process. Subsequently, the diffusion models are used to recon-
struct the structural embeddings of cascades by approximating
the scores of the posterior distribution transformed from the
prior by conditioning the implicit feature of cascade data. The
latent ODE defines a generative process over time based on
the deterministic evolution of an initial latent state. Compared
with previous probabilistic cascade learning models [11], [24],
[25] that simply model the latent distribution of information
cascade with a variational autoencoder or normalizing flow,
CasDO exploits the reverse diffusion process to learn the noise-
perturbed distribution and therefore can model the more complex
cascade networks. Besides, our CasDO is capable of denoising
the information diffusion stochasticity and, more importantly,
simulates the uncertainty of real-world information propagation.
Our main contributions can be summarized as follows:
� We present a Temporal ODE-based approach for modeling

the irregular-sampled events in information cascades. It
captures the continuous-time dynamics in a principled way
compared to previous RNN-based counterparts.

� We devise a novel framework entitled CasDO to capture
the uncertainties in information cascades, which not only
models the probabilities of sharing behavior among nodes
but also preserves the uncertainty of information diffusion
and cascade growth.

� We conduct extensive experiments on real-world large-
scale information cascade datasets and demonstrate that
CasDO can improve the prediction performance compared
to existing state-of-the-art models while explaining its
behavior.

The reminder of this paper is organized as follows. We review
related literature in the next section and then introduce necessary
background in Section III. In Section IV, we present the details
of the proposed CasDO model. The experimental evaluations
including performance comparison, ablation study, parameter
analysis and model interpretability are presented in Section VI.
Finally, we conclude this work and point out our the potential
future work in Section VII.

II. RELATED WORK

In this section, we review prior works that are most relevant
to our paper. Our task focuses on information cascade pop-
ularity prediction, which involves the techniques of diffusion
probabilistic models and ordinary differential equation-based
recurrent neural networks.

A. Information Cascade Prediction

Modeling information cascades and predicting informa-
tion diffusion in social and academic networks have been
well-studied in recent years [1], [26]. Both macroscopic and
microscopic approaches have been proposed for information
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cascade learning on practical downstream prediction tasks such
as popularity prediction [3], rumor detection [27], and user
activation prediction [21].

Existing methods analyze the diffusion of information from a
variety of aspects, including the underlying diffusion structure
(e.g., the topology of users in a social network), content features
of information sources (e.g., texts, topics, and images of posts
and news articles), temporal characteristics of time-series (e.g.,
the arrival time of retweets and citations). Various techniques
have been utilized to extract useful cascade features [7], to
model the diffusion mechanisms and protocols [28], and to learn
expressive cascade representations [24], [29].

Early efforts in information cascade modeling mainly fall
into the engineering of cascade features. Researchers have ex-
plored various kinds of features to inspect whether they can
inform cascade propagation in the future and, if so, to what
extent one can predict cascade sizes [30]. For example, the au-
thors in [7] group five representative feature-sets retrieved from
cascade observation in the early stage for cascade prediction
(e.g., predicting future cascade size and structure), including
content features, original poster features, structural features,
and temporal features. After experimenting on 150K Facebook
photo share cascades, the author found that all feature-sets
are indicative, among which, temporal and structural features
performed the best, e.g., the time elapsed between the post and
reshares, the number of users who saw the post, and the number
of friends/subscribers/fans of the poster.

Predictability of information cascades and the problem for-
mulations in different social networks, as well as potential
explanations for why certain cascades grow faster, have been
discussed in [30]. The authors analyzed two predicting strate-
gies, including a priori prediction and peaking prediction, and
selected a wide range of features covering structure, time, early
resharers, and similarity between users. Experiments conducted
on Last.fm, Flickr, and Twitter using logistic regression show
the following findings: temporal features not only perform well
(beating all other features combined) but also generalize across
domains. However, the opinions on the roles of non-temporal
features are inconsistent. e.g., structural features in subgraphs
can foresee either higher or lower popularity depending on
specific social networks [30], while local structures perform
well on social networking services but worse on academic
networks [11]. In addition, content features were generally
considered as poor predictors that are neither generalizable
to different platforms nor relevant to the final popularity [1].
Nevertheless, contents of cascades were also reported to be
useful for popularity prediction in [31].

In addition to various features crafted from information cas-
cades, researchers also proposed numerous generative models
to capture the temporal dynamics of information diffusion.
Notably, the family of self-exciting Hawkes processes [32]
has been extensively studied in the literature, which describes
the diffusion process as an event sequence and the intensity
function of the process is conditioned on all past events (a.k.a.
the “rich-get-richer” phenomenon). Various kinds of stochastic
point processes have been proposed to simulate the information
diffusion mechanism, which, more or less, incorporated different

endogenous and exogenous factors to model the intensity and de-
cay functions [26]. For example, the reinforced Poisson process
was proposed in [4] to track the citation dynamics of a cascade,
and the self-exciting point process was studied in [28], [32] for
predicting cascade popularity in microblogging networks.

More and more researchers are exploring the potential of deep
learning for improving the performance of information cascade
prediction. Deep neural networks – which can learn expressive
representations from large-scale data – were proven to succeed
in learning and predicting in domains such as images, voice,
and language processing. Recurrent neural networks (RNNs),
graph neural networks (GNNs) and Transformers were utilized
to model the temporal and structural characteristics of cascades,
respectively. For example, CasCN [13], and VaCas [24] com-
bine the information cascade graph and temporal sequence for
prediction; CasFlow [11] models the local cascade graph in
the context of global social network; Coupled GNNs [33] was
proposed to capture the cascading effect; CCGL [34] proposed to
pre-train cascade graphs to improve the generalization capability
of prediction; to name a few. Readers are referred to [1], [26]
for comprehensive reviews on the recent advances of deep
learning-based information cascade prediction.

B. Diffusion Probabilistic Models

Generative models, e.g., normalizing flows (NF) [35], vari-
ational autoencoders (VAE) [36], and generative adversarial
networks (GAN) [37], are able to generate high-quality im-
ages [38], image-to-image translations [39] among many others.
Diffusion probabilistic model (DPM) [22] enables both flexible
and tractable modeling of complex data by Markov chain that
consists of transitions from well-known simple distributions
(e.g., Gaussian) to actual data distribution, and recently has
shown excellent results on modeling high-dimensional data dis-
tributions (e.g., texts and images). DPMs use a forward diffusion
process (inspired by non-equilibrium statistical physics [40]) to
gradually convert the data distribution into tractable distribution
by adding noises. Then, a reverse diffusion process is defined
to recover the data in a generative way. Denoising diffusion
implicit model (DDIM) [41] was presented to speed up the
sampling process of the Markov chain, which generalized DPM
by a class of non-Markovian processes without changing the
training objective. Researchers also explored various network ar-
chitecture [42] and stochastic differential equations (SDEs) [43]
to improve the quality of generated samples. Recently, DPMs
have achieved comparable or even better performance compared
to GANs and VAEs in a range of applications such as audio
synthesis [44], and time-series imputation [45].

C. Neural Ordinary Differential Equations

Ordinary differential equations (ODEs) are recently con-
nected to deep neural networks [23] by parameterizing the
derivative of hidden states with neural networks instead of the
discrete sequence of hidden layers used in traditional models
such as ResNet and RNNs, and have advantages in trading-off
between numerical precision and computation, while signifi-
cantly saving memory cost.
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Fig. 1. Evolving cascade graph for popularity prediction.

TABLE I
MATHEMATICAL SYMBOLS

Subsequent works designed new variants of neural ODEs
from different perspectives and applied them on real-world ap-
plications such as time series data modeling [15], and generative
models [46]. For example, in [15] the authors proposed to model
irregular-sampled time-series data by generalizing the RNNs to
have continuous-time states.

III. PRELIMINARIES

In this section, we provide the necessary background and
formally define the studied problem. Information cascades can
be seen as a sequence of actions that disseminate the information
(e.g., a tweet in microblogging network or a paper in academic
network) to a large body of audience. Take Twitter platform as an
illustrative example (throughout the paper), the tweets posted by
users can be seen as information items, which can be retweeted
(reshared) by other users. We consider the retweeting action as
the diffusion process and the retweet sequence as an information
cascade. Following previous works [3], [13], [24], [29], in this
paper, we formulate the information cascade as a diffusion tree,
as shown in Fig. 1. Our goal is to predict the popularity of an
information cascade in the future (Definition 3.3) by observing
its early evolution (Definition 3.1) and the underlying diffusion
network (Definition 3.2). Table I summarizes the frequently used
notations used in this paper.

Definition 1 (Information Cascade Graph): Given an infor-
mation item and all its diffusion, an information cascade graph
is defined as Gc = {Vc, Ec}, where Vc = {u1, u2, u3, . . . } is the
set of users participated in propagating the information, and
E = {e1, e2, e3, . . . } is the set of edges between users – each

edge ei,j = (ui, uj , tk) denotes that user ui forwarding user uj

at time tk.
Definition 2 (Global Graph): The global graph Gg =

{Vg, Eg} represents a social/citation network. The nodes are
users/authors and the edges are relationships between them, e.g.,
follower/followee relationship.

Definition 3 (Information Cascade Popularity Prediction):
Given an information cascade graph snapshot Gc(to) observed
at time to, and the underlying global graph Gg , we aim to train
a model that can predict the future popularity P (tp) = |Vc(tp)|
(the number of retweets/citations) at a prediction time tp (tp �
to).

IV. METHODOLOGY

We now present the architecture of our proposed CasDO
model which not only captures the structural and temporal char-
acteristics of information cascades but also models the irregu-
larity of time-series and the diffusion uncertainty in continuous-
time – discussed in detail in respective subsections. As shown
in Fig. 2, CasDO consists of four components:

1) Hierarchical structure learning: To learn both local and
global graph structures efficiently and effectively, we use
spectral graph wavelets from signal processing [47] to
produce the structural-equivalent embeddings of nodes in
the cascade graph. Besides, we employ the sparse matrix
factorization [48] to obtain users’ global embeddings that
implicitly capture the latent relationships between users,
e.g., user interests and node proximity.

2) Irregular temporal diffusion modeling: The retweeting
behavior of a tweet can occur at any time after the posting
time and need not follow a strict periodicity. This, in
turn, leads to irregular time series in information cas-
cades. Traditional time-series modeling methods, such as
RNN-based ones, are not a good fit for the irregularly-
sampled time-series data [15]. We design a module named
T-ODE that integrates neural ordinary differential equa-
tions (ODEs) with RNNs to build continuous-time hidden
dynamics to handle the arbitrary time gaps between each
retweet and the temporal dependencies between retweets
in a cascade are simultaneously modeled.

3) Diffusion uncertainty modeling: Deterministic models
cannot capture the inherent uncertainties in informa-
tion diffusion, which may cause performance degrada-
tion. CasDO incorporates a probabilistic temporal model,
which considers the uncertainty from cascade graph struc-
tures and the cascade growth through diffusion models
and ODE-based variational inference framework [23] to
enhance its robustness. The whole model is trained with
noises injected in the stochastic hidden layers, with a
regularizer encouraging this injection process.

4) Prediction network: With the hierarchical cascade struc-
ture embeddings, we feed them into T-ODE for irreg-
ular time-series modeling and use temporal-structural
diffusion probabilistic models for uncertainty handling.
Afterward, combined with irregular time-series model-
ing and structure-evolution uncertainty modeling, the
learned information cascade representations are fed into



CHENG et al.: INFORMATION CASCADE POPULARITY PREDICTION VIA PROBABILISTIC DIFFUSION 8545

Fig. 2. Overall framework of CasDO. (1) Local and global structure feature extraction; (2) Irregular time-series learning by temporal ODE with continuous-time
hidden dynamics; (3) Evolution uncertainty learning by diffusion probabilistic models with noise injection; and (4) Final popularity prediction network.

multi-layer perceptrons (MLPs) to predict the final popu-
larity of cascades.

A. Hierarchical Structure Learning

For a given information cascade graph and its underlying
global social network, we first learn their structural embeddings
that can better represent the roles of users in the diffusion
process. These embeddings are later used for modeling irreg-
ular temporal diffusion and uncertainties. We note that many
structural learning methods [49], [50], [51], [52], [53] can be
used here to extract meaningful representations of information
cascade graphs and global graph, e.g., traditional methods like
DeepWalk, LINE, and node2vec; GNN-based models such as
GCN, GAT, and GraphSage; as well as heterogeneous and
dynamical methods [54], e.g., EvolveGCN, HetGNN, and meta-
path2vec.

Following previous works [11], [24], we adopt structural
equivalent local embeddings for cascade graph learning, and
structure proximity embeddings for large-scale global graph. For
information cascade graph, we use techniques from graph signal
processing [55] and graph Laplacian to calculate the spectral
graph wavelets with heat kernel function on the spectrum. For
global graph with millions of users, generating node embeddings
is challenging due to the high computational overhead. Thus,
we use sparse matrix factorization [48] to learn the structural
properties of nodes in global graph.

1) Learning Structural-Equivalent Local Embeddings for
Cascade Graphs: Given an information cascade graph Gc(to)
observed at time to, we have its weighted adjacency matrix Ac

and diagonal degree matrix Dc. Then an unnormalized graph
Laplacian Lc = Dc −Ac = UΛUT can be used to calculate
the spectral graph wavelets Φ with heat kernel function on the
spectrum [55]. Each column vector of Φ ∈ R|Vc|×|Vc| is the
wavelets for a node in cascade graph. In order to solve the
graph mapping problem (i.e., solve the “isomorphism” prob-
lem between two nodes’ neighbors), the wavelet coefficients
are processed as a probability distribution. Then the empirical

characteristic functions are utilized to obtain the final structural-
equivalent node embeddings Ec. The Chebyshev polynomi-
als are used to calculate the wavelet coefficients. The overall
complexity for cascade graph structure learning is linear in the
number of edges in the graph.

2) Learning Structure-Proximities for Nodes in Large-Scale
Global Graph: The nodes in a global graph possess certain
properties distinct from the nodes in a cascade graph. Consider
a global graph in which there are millions of nodes. On one
hand, embedding such a large graph is highly challenging due
to the intensive computational overhead (or, even impossible)
– e.g., the factorization-based model requires O(|Vg|3) time
complexity. On the other hand, in a global graph, we want to learn
different information from the graph structure, e.g., close nodes
(in terms of distance) should have similar structure embeddings.
Thus, we use sparse matrix factorization to learn the structural
properties of the global graph, which is efficient and scalable to
graphs with millions of nodes and edges.

Specifically, given a global graph Gg = {Vg, Eg} (e.g., a
Twitter follower/followee graph or an academic collaboration
graph), Ag and Dg are the weighted adjacency matrix and
diagonal degree matrix, respectively. A sparse randomized trun-
cated singular value decomposition is used to approximate the
factorization of the proximity matrix. Considering the long-
tailed distribution and sparsity of nodes in social networks, the
expensive computation for a large-sized matrix becomes feasible
and efficient, with tolerable information loss. Now we have
the node embeddings Eg in the global graph for later train-
ing. Learning both local and global structures of information
cascades is proved to be effective across different domains [1],
and we also adopt this setting from [11] in CasDO. For each
user ui in cascade graph, we concatenate its global embedding
Eg,ui

with cascade embedding Ec,ui
, denoted as Eui

. Then we
feed the cascade sequence of user embeddings {Eui

|ui ∈ Vc}
to the T-ODE for irregular time-series modeling, and feed the
user embedding matrix E = [Eu1

,Eu2
. . . ]T ∈ R|Vc|×|Eu| to

the diffusion probabilistic model for the uncertainty modeling
from structure to evolution.
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Fig. 3. Evolution of the hidden state in a time series. Colored horizontal lines
denote different dimensions of the hidden state. (a) The hidden state of standard
RNNs only updates at new observations. (b) In Neural ODEs [23], the state
obeys an ODE all the time but is only determined by the initial state. (c) T-ODE
has continuous states which obey an ODE between successive points and can
be updated at any observation.

B. Irregular Temporal Diffusion Modeling

Due to the randomness of human reaction behavior, retweet-
ing actions can occur at any time, which leads to irregular
time series in information cascades. The time intervals between
real-world cascade events can be tens of seconds or even several
days. As depicted in Fig. 3, using standard RNNs in this setting
is ineffective because that RNNs can only update their states
upon the occurrence of a new point, which, are more suitable
for learning regularly-sampled time-series data (e.g., electricity
forecasting). To better match real cascade events, a new method
is needed to inherently consider the underlying continuous-time
dynamics of information cascades. Inspired by neural ordinary
differential equations (ODEs) [23], we propose a module named
as temporal-ODE, which generalizes state transitions in RNNs to
continuous-time dynamics defined by ODEs while considering
such temporal interval information among cascade events by a
gating mechanism.

First, following [56], we employ an LSTM cell before per-
forming the ODE solver to avoid the vanishing or exploding
of gradients. Subsequently, we use a numerical ODE solver –
the Euler method [23] in our implementation – to evaluate the
hidden states between successive observations and update the
hidden states using a GRU cell at each observation. Besides, we
propose a temporal gating mechanism T-Gate to merge the latent
representation from the first two steps to learn the continuous-
time dynamics. We use the gating mechanism T-Gate to handle
the irregular sampling problem caused by the time-varying
from seconds to hours between successive cascade events that
make the ODE solver challenging to evaluate continuous hidden
dynamics.

In Fig. 2, we depict the detailed structure of T-ODE in one-
step. Within the previous hidden state pair (ci−1,hi−1) at time
ti−1 and user embedding Eui

, we first feed them into the LSTM
cell to generate a new hidden state (ci,h

′
i):

(ci,h
′
i) = LSTMCell (θl, (ci−1,hi−1) ,Eui

) , (1)

where ci−1 is the memory cell and hi−1 is the output state. θl
denote the learnable parameters in LSTM Cell.

Then, we feed hi−1 into the ODE solver based on the Euler
method to obtain the ODE hidden state zi at each step. This
operation is to construct the continuous-time dynamics of the
hidden states between irregular time intervals in all consecutive
(ti−1, ti) pairs. To construct the true user ui’s representation at
time ti, we take two states of LSTM cell – output state h′

i and

Algorithm 1: Training of the T-ODE Model.

Input:n = |Vc|, LSTMCell weight θl,GRUCell weight θg ,
neural ODE blocks weight fω , output weight and bias
Wo,bo, {hi−1, ti, ti−1,Δti}i=1···n;

Output:The output state {oi=1···n};
1: h0 = 0; � Initialize hidden state.
2: c0 = 0; � Initialize memory cell.
3: for all i in {1. . .n} do
4: Calculate cascade hidden state

(ci,h
′
i) = LSTMCell(θl, (ci−1,hi−1),Eui

);
5: Obtain zi = ODESolver(fω,hi−1,h

′
i, (ti−1, ti));

6: Calculate continuous-time dynamics of the hidden
states h′′

i = GRUCell(θg,h′
i, zi);

7: Update cascade hidden state
hi = T-Gate(h′

i,h
′′
i ,Δti);

8: Obtain output state oi = hiWo + bo

9: end for

hidden state zi – as the input for latent representation learning
of ui, which outputs h′′

i . The above process is summarized as
follow:

zi = ODESolver (fω,hi−1,h
′
i, (ti−1, ti)) , (2)

h′′
i = GRUCell (θg,h

′
i, zi) , (3)

where zi ∈ Rd is the solution at ti to an ODE started from time
ti−1; h′′

i is the updated hidden state; θg denotes the learnable
parameters in GRU Cell. The neural ODEs [23] consider the
parameter updating in neural networks as the process of solving
ODEs and the discrete layers of neural networks (e.g., the hidden
states of RNNs) can be regarded as an Euler discretization of a
differential equation from the perspective of numerical methods:

dh(t)

dt
= fω(h(t), t), where h(t) = ht, (4)

h (t2) = h (t1) +

∫ t2

t1

fω(h(t), t)dt, (5)

where neural network is parameterized by fω specifying the
continuous dynamics of the hidden states. The parameter update
process of neural ODE blocks can be regarded as Solving ODEs
with numerical methods such as Euler, Runge-Kutta, and the
adjoint method. Given the latent states h′

i and h′′
i , we update hi

using the gating mechanism:

hi = νi � h′′
i + (1− νi)� h′

i, (6)

where the temporal gate νi = e−(Δti) ∈ Rd helps the model
determine how much of the state is solved by ODE that needs
to be passed to the future. Finally, we compute the output states
{o1 . . .on} via a fully-connected layer for downstream tasks,
where o ∈ Rd and n denotes the number of users |Vc| in the
early evolution. Generally, we use the final output state on as
the cascade latent representation Z. The overall training process
of T-ODE is formalized in Algorithm 1.
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C. Diffusion Uncertainty Modeling

The uncertainty estimation on the prediction of information
cascades is important for information diffusion learning in
large-scale social networks. Considering and quantifying the
uncertainty-level dynamics of information items exposed to
potential adopters in the neighborhood are desired in real-world
applications. For example, in [7] the authors showed that the
popularity of information cascades is unpredictable to some
extent due to the uncertainty during diffusion. In recent years,
researchers made initial efforts to exploit uncertainty in the
information cascade. The self-exciting Hawkes point process is
used in [57] to model the uncertainty of information cascade pop-
ularity prediction and improve the generalization performance.
In [11], [24], [25], variational inference and normalizing flows
are used to model the diffusion uncertainty within the rich family
of posterior distributions.

The information diffusion uncertainty exists in not only the
evolution of the cascade (temporal dependence of cascaded
graphs) but also the spatial correlations among users (spatial
structure of cascaded graphs). In CasDO, we integrate the prob-
abilistic diffusion model and latent ODEs to model the infor-
mation diffusion uncertainty from the perspective of the spatio-
temporal latent variables. We propose conditional score-based
diffusion models, which is used to reconstruct the structural
embeddings of cascades by approximating the scores of the
posterior distribution obtained from the prior by conditioning the
implicit features of cascade data. The conditional probabilistic
diffusion models are explicitly trained for structural generation
and can exploit useful correlations between observed structural
features. The latent ODE defines a generative process over
time based on the deterministic evolution of an initial latent
state.

First, we exploit the diffusion model [22], [58] to capture
the uncertainties of the structural embeddings in a generative
probabilistic way. The diffusion models consist of a forward
process and a reverse process. The forward process transforms
a complex data distribution into a simple distribution (e.g.,
Gaussian). The reverse process then transforms the simple noisy
distribution into the target (cascade representation) distribution
through a diffusion chain. In order to exploit useful information
in structural embeddings and better generate the samples meet-
ing the target distribution, we design a conditional score-based
diffusion model that aims to learn the conditional distribution of
cascade structural embeddings.

The conditional score-based diffusion model generates target
cascade structural embeddings Eta

0 by exploiting conditional
observations Zco which represent the cascade implicit features
Z. The goal of the probabilistic generation is to estimate the
true conditional data distribution q(Eta

0 |Zco) with a model dis-
tribution pθ(E

ta
0 |Zco). Given an information cascade graph Gc,

a global graph Gg and its structural embedding E learned in
Section IV-A, we denote the start data distribution as q(E0) and
let E0 = E. The forward process gradually converts the prior
q(E0) into a tractable distribution by adding noise to the data.
Each time-step r ∈ {0, 1, 2, . . . , R} of the forward process is

defined as a Gaussian transition:

q (E1:R|E0) :=

R∏
r=1

q (Er|Er−1) , (7)

q (Er|Er−1) := N
(
Er;

√
1− βrEr−1, βrI

)
, (8)

where βr is fixed as a constant or scheduled as variances
learned by reparameterization [36] to control the procedure of
adding Gaussian noise to the data. We focus on the conditional
diffusion model with reverse process and aim to model the
conditional distribution p(Eta

r−1|Eta
r ,Z

co) without approxima-
tions. Specifically, we define a conditional denoising function
εθ : (Eta|Zco) → Eta, which takes the cascade temporal latent
representation Zco learned from T-ODE running forward as
inputs:

pθ
(
Eta

0:R|Zco
)
:= p

(
Eta

R

) R∏
r=1

pθ
(
Eta

r−1|Eta
r ,Z

co
)
, (9)

pθ
(
Eta

r−1|Eta
r ,Z

co
)

:= N (Eta
r−1;μθ

(
Eta

r , r|Zco
)
,Σθ

(
Eta

r , r|Zco
)
.

(10)

When sampling Er at round r, we let αr := 1− βr and ᾱr :=∏r
k=1 αk, and the distribution q(Er|E0) can be expressed as

q (Er|E0) = N (
Er;

√
ᾱrE0, (1− ᾱr)I

)
. (11)

The goal of pθ(Eta
r−1|Eta

r ,Z
co) is to eliminate the Gaussian noise

added in the diffusion process. The parameters θ are learned to
fit the data distribution q(E0) by minimizing the negative log
likelihood via a variatioanal bound:

E
[
log pθ

(
Eta

0

)] ≥ Eq

[
log

pθ(E
ta
0:R|Zco)

q(E1:R|E0)

]

= Eq

[
log pθ(E

ta
R) +

∑
r≥1

log
pθ(E

ta
r−1|Eta

r ,Z
co)

q(Er|Er−1)

]
=: L,

(12)

which can be simplified and efficiently trained with stochastic
gradient descent [58] by rewriting (12) as

L(θ) := Er,E0,ε

[∥∥ε− εθ
(√

ᾱrE0 +
√
1− ᾱrε, r|Zco

)∥∥2] ,
(13)

where noise ε ∼ N (0, I) and εθ is a network predicting the ε.
An illustration of the network εθ is shown in Fig. 4. The sampling
process is defined as:

Eta
r−1 =

1√
αr

(
Eta

r − βr√
1− ᾱr

εθ
(
Eta

r , r|Zco
))

+ σrz̄,

(14)
where Eta

R ∼ N (0, I), σ2
r = β̃ = 1−ᾱr−1

1−ᾱr
βr, and z̄ ∼ N (0, I) if

r > 1; otherwise z̄ = 0.
After training, we wish to exploit more useful structural

information between the cascade graph and the global graph
and better model the spatial structural uncertainty. As in train-
ing, we do not incorporate the loss function of the conditional
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Fig. 4. Implementation of network εθ in diffusion models.

Algorithm 2: Training of the Diffusion Model.

Input:distribution of training data q(E0), the number of
iteration r, the sequence of noise levels βr, cascade
temporal representation Zco and the number of iterations
Niter.

Output:Trained denoising function εθ.
1: for all i = 1 to Niter do
2: Initialize time step r ∼ Uniform({1, . . . , R});
3: E0 ∼ q(E0);
4: Initialize noise ε ∼ N (0, I);
5: Calculate noisy targets Er =

√
αtE0 + (1− αt)ε;

6: Compute gradient 
θ||(ε− εθ(Er, r |Zco))||22 via
(13);

7: end for

Algorithm 3: Sampling in Probabilistic Diffusion.

Input:noisy Eta
R ∼ N (0, I),the number of iteration r, the

sequence of noise levels βr, trained denoising function εθ
and state Zco.

Output:Sampling Eta
0 ;

1: Initialize noisy targets Eta
R ∼ N (0, I);

2: for all r = R to 1 do
3: if r > 0 then
4: Initialize noise z̄ ∼ N (0, I);
5: else
6: Initialize noise z̄ = 0;
7: end if
8: Sampling

Eta
r−1 = 1√

αr
(Eta

r − βr√
1−ᾱr

εθ(E
ta
(r), r|Zco)) + σrz̄ via

(14);
9: end for

score-based diffusion model into the final objective of CasDO
but optimize the diffusion model to capture the implicit fea-
ture of the user embedding E. As in sampling procedure, the
process of sampling trajectories from the “warm-up” state Zco

can be repeated R times to obtain empirical quantiles of the
spatial structure uncertainty. By sampling procedure, we obtain
a sampleEta used for modeling evolution uncertainty introduced
below.

Next, we design a latent ODE network based on the VAE
framework, which copes with randomness and uncertainty and
leverages them to model the latent variable’s evolutionary un-
certainty. We use the T-ODE and the diffusion models as the
encoder and then utilize the ODE’s extrapolation to simulate
the complete evolution dynamics with uncertainty. In addition
to user embedding Eta generated from the conditional diffusion
models, we also use the backward T-ODE to obtain the initial
cascade state Zta

1 . Let pϑ = (Zta
1 |Eta) be the true posterior dis-

tribution. We follow VAEs to approximate pϑ = (Zta
1 |Eta) with

qφ = (Zta
1 |Eta) using a neural network, where φ is the parameter

set of q. We first derive the mean μ and variance σ of the initial
cascade state Zta

1 from the output of T-ODE(Eta) using linear
transformations. According to the reparameterization trick [36],
we haveZ′

1 = μZta
1
+ σZta

1
∗ ς where ς are samples from standard

Gaussian. This process is formalized by:

μZta
1
, σZta

1
= g

(
T-ODE

(
Eta

))
, Z′

1 = μZta
1
+ σZta

1
∗ ς, (15)

where g is a neural network translating the final hidden state of
the T-ODE encoder into the mean and variance of Zta

1 . To get
the approximate posterior at time t1, we run T-ODE encoder
backwards-in-time from tn to t1.

Moreover, we use the ODE solver to evolve it in the proba-
bilistic space, which can be formulated by:

Z′
o = Z′

1 +

∫ tn

t1

fξ (Z
′
t, t) dt, (16)

where fξ(·) is the ODE block that estimates the derivative
of Z(t), i.e., dZt/dt. In this way, we produce a continuous
evolutionary trajectory where each point denotes the latent vari-
ables following the posterior distribution p(Z′

t|Z′
1, . . . ,Z

′
t−1).

Besides, we can extrapolate Z′
o while explicitly considering

the irregular interval evolution uncertainty in the information
diffusion process.

Finally, we train the encoder and decoder in the latent
ODE network jointly by maximizing the evidence lower bound
(ELBO):

log pϑ
(
Eta

)
= log

∫
pϑ

(
Eta | Zta

1

)
p
(
Zta

1

)
dZta

1 =

Eqφ(Zta
1 |Eta) log

[
pϑ (E

ta,Zta
1 )

qφ (Zta
1 | Eta)

]

+ DKL
(
qφ

(
Zta

1 | Eta
) ‖pθ (Zta

1 | Eta
))

≥ Eqφ(Zta
1 |Eta)

[
log pθ

(
Eta,Zta

1

)− log qφ
(
Zta

1 | Eta
)]

� ELBO
(
Eta

)
. (17)

The training and sampling processes of the diffusion model are
provided in Algorithms 2 and 3.

D. Prediction

The last component of CasDO is multi-layer perceptrons
(MLPs) with one final output unit. We concatenate Z from the
T-ODE (based on the original user embedding E) and Z′

o from
the latent ODEs (based on the generated user embedding Eta),
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and then feed them into MLP to predict cascades’ popularity:

P̂ (tp) = MLPs (Concat (Z,Z′
o)) . (18)

During training, we use the mean square logarithmic error
(MSLE) as the objective and combine the MSLE and ELBO
to train CasDO. The final loss function is defined as:

L =
1

N

N∑
k=1

(
log P̂k (tp)− logPk (tp)

)2

− λELBO
(
Eta

k

)
,

(19)
where N is the total number of cascades, Pk(tp) is the ground
truth, i.e., the number of user who retweets the cascade, P̂k(tp)
is the predicted popularity for cascade Ck, and ELBO(Eta

k ) is
the ELBO that needs to be maximized given by (17).

V. MODEL COMPLEXITY

Since online social networks contain millions of nodes and
edges, it is important to model structure and time dependencies
among information cascade graphs for popularity prediction.
CasDO models both and, compared to conventional graph cas-
cade models especially those GNN-based models, uses graph
wavelets and sparse matrix factorization to mitigate the time
complexities for efficiently modeling node embedding from the
cascade graph and global graph.
� Complexity of computing embeddings of nodes from cas-

cade graph and global graph: the spectral graph wavelets
are computed by Chebyshev polynomials, the time com-
plexity is O(h|Ec|) by computing embeddings of nodes
from cascade graph. Since the computation of truncated
singular value decomposition is O(d2g|Vg|), the overall
complexity of sparse matrix factorization is O(d2g|Vg|+
|Eg|). Here dg is the dimension of nodes in global graph.

� Complexity of diffusion models: in the forward process, the
diffusion models utilize reparameterization tricks to calcu-
late noisy targetE(r), which only requires linear time com-
plexity. During training of diffusion models, the denoising
function εθ is only related to E(r), the dimensions of Z,
and the time steps R. Therefore, the time complexity is
O(R · d ·E(r) +R · d · |Z|) in the whole forward process.
Note that the time complexity of sampling process is the
same as the forward process.

� Complexity of computing latent feature for irregularly
sampled data: one computational difficulty that arises from
irregularly sampled dataVc is that observation times can be
different for each time-series in a particular mini-batch. To
solve all ODEs in a mini-batch in-sync, we should output
the solution of the combined ODE at the union of all time
points in the batch. Taking the union of time points does not
substantially affect the running time of the ODE solver, as
the adaptive time stepping in ODE solvers is not sensitive
to the number of time points (t1 . . . tn).
Instead, it depends on the length of the time interval [t1, tn]
and the complexity of the dynamics. Thus, our T-ODE has
a similar asymptotic time complexity to standard RNN
models, which is determined by the input dimensions of
latent variables.

TABLE II
STATISTICS OF THE DATASETS

VI. EXPERIMENTS

We now describe datasets and baselines, and report the results
of experimental evaluation, including prediction intepretations
and ablation studies. For reproducibility, the code is available at
https://github.com/CZ-TAO12/CasDO.

A. Experimental Settings

1) Datasets: We select three public large-scale information
cascade datasets. They include two social networks (Twitter
and Weibo) and one academic citation network (APS). The first
scenario is used for predicting the number of retweets of posts in
social networks, and the second one to forecast the citation count
of academic papers. Both types of datasets provide real-world in-
formation propagation for comparing the performance between
CasDO and the baselines. In addition, using two scenarios could
verify the generalizability of the proposed model and avoid the
risk of limiting the model to a specific type of application. We
randomly split each dataset into a training set (70%), a validation
set (15%), and a test set (15%). Statistics of datasets are shown
in Table II.
� The Twitter hashtag cascade dataset is collected by [59],

which contains public English written tweets published
between Mar 24 and Apr 25, 2012. A Hashtag and its
adopters form an information cascade. The global graph is
built by hashtag adopters and their relationships, including
follower/followee, retweet and mention interactions. We
set observation time to to 1 d or 2 days, and the prediction
time tp to 32 days.

� Sina Weibo is the most popular microblogging platform
in China. A Weibo retweet cascade is composed of the
original tweet and its retweets. This dataset is introduced
by [29], which collected all original tweets posted on Jun
1, 2016, and tracks their retweets the same day. All user
retweeting relationships form the Weibo global graph. We
set the observation time to to 0.5 h or 1 h, and the prediction
time tp to 24 hours.

� APS is a citation dataset released by American Physi-
cal Society (https://journals.aps.org/datasets). It contains
616,316 scientific papers published by 17 APS journals.
Every paper in the APS dataset and its citations form a

https://github.com/CZ-TAO12/CasDO
https://journals.aps.org/datasets
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citation cascade. The global graph in APS is defined as the
author interaction graph. We set the observation time to to
3 years or 5 years, and the prediction time tp to 20 years.

Following [11], we filter out the cascades with observation
size |C(to)| < 10, and for observed cascade size |C(to)| > 100,
we only select the first 100 adopters for training. Twitter hashtags
are tracked at least 15 days during the observation window. Fol-
lowing [29], we only consider Weibo tweets published between
8 AM and 6 PM, ensuring at least 6 hours for retweets growth.
For the APS dataset, we select papers published between 1893
and 1997, giving each article ≥ 20 years to gain citations.

2) Baselines: We compare our model with 11 information
cascade learning methods (indicated in boldface) from three
categories:

(1) Feature-based methods are widely used for information
cascade prediction. Features extracted from cascades are fed
into various machine learning models for prediction. Previous
studies [7] show that structural features and temporal features
are informative for information cascade prediction, e.g., in [60]
the authors used observed popularity P (to) to predict P (tp).
We denote this method as Feature-P. In addition, we extract all
features mentioned in [11] and feed them into a linear regres-
sion model and a two-layer MLP model, and denote these two
methods as Feature-Linear and Feature-Deep, respectively.

(2) Statistical-based models: [61] builds a time-series model
to predict information popularity, denoted as TimeSeries. We
also include DeepHawkes model [29], which integrates the high
prediction power of end-to-end deep neural networks into the
interpretable factors of point process for popularity prediction,
which considers three main aspects of Hawkes process, i.e., the
influence of users, self-exciting mechanism, and time decay.

(3) Deep learning-based: Existing deep learning-based mod-
els utilize recurrent neural networks (RNNs) [62] to model
the temporal information automatically from cascade itself.
In addition, some works also consider the cascade structure
that depends on the underlying social network. They lever-
aged graph neural networks (GNNs) or attention mechanisms
to learn social correlations for information cascade popularity
prediction.
� CasCN [13] combines recurrent neural network and graph

convolution network to exploit both temporal and structural
information for cascade prediction. Specifically, it samples
sub-cascade graphs and uses LSTM to capture the evolving
process.

� CoupledGNN [33] leverages two coupled GNNs to cap-
ture the interplay between node activation states and the
spread of influence and stacks graph neural network layers
to capture the cascading effect.

� FOREST [10] combines reinforcement learning and
RNNs to handle the multi-scale cascade prediction prob-
lem.

� DyDiff-VAE [25] learns user interest evolution using GRU
and estimates the propagation likelihood with a dual atten-
tive variational autoencoders.

� LatentODE [15] generalizes discrete RNNs to
continuous-time hidden dynamics defined by ODEs.
It considers the latent representation a time-series variable

in RNNs, and therefore is capable of handling arbitrary
time gaps between observations.

� CasFlow [11] learns both local and global structures in in-
formation cascades and leverages variational autoencoders
and normalizing flows to enhance the learned cascade
representations.

� CTCP [63] designs a graph learning framework for cas-
cade popularity prediction. It considers different cascades
via a universal sequence of user-cascade and user-user
interactions, as well as then extracts the dynamic states
of users and cascades learned from graph sequences.

� CasTformer [20] incorporates a global spatio-temporal
positional encoding and relative relationship bias matri-
ces into the self-attention architecture, which enables this
model to extract diverse cascade relationships for the pop-
ularity prediction.

� MINDS [64] constructs sequential hypergraphs to capture
dynamic interactions among various cascades. It combines
adversarial training and orthogonality constraints to ad-
dress feature redundancy between shared and task-specific
features for predicting popularity.

3) Parameter Settings: All models are tuned to the best
performance on the validation set, with early stopping (pa-
tience is 10 epochs). The batch size is set to 64. The weight
hyperparameter λ is selected from {0.001, 0.01, 0.1, 0.5, 1} to
trade-off between the prediction loss and uncertainty modeling
during training. We select the dimensions of latent states and
cascade embeddings from 8 to 128. In the prediction network,
we use three layers of MLPs and ReLU activation. All deep
learning models, including CasDO, are optimized by Adam [65]
with a learning rate of 5× 10−4 on the training set. In the
diffusion models, the diffusion steps are set to 8 using a linear
variance schedule starting from β1 = 1× 10−4 and βR = 0.02.
The architecture for learning εθ is a conditional 1-dim dilated
ConvNets with residual connections adapted from DDIM [41].

4) Evaluation Metrics: Following the previous studies [11],
[13], [29], we use mean square log-transformed error (MSLE)
and mean absolute percentage error (MAPE) to evaluate the
performance of prediction:

MSLE =
1

N

N−1∑
i=0

(
log2 P̂i − log2 Pi

)2

, (20)

MAPE =
1

N

N−1∑
i=0

∣∣∣log2 P̂i − log2 Pi

∣∣∣
log2 Pi

, (21)

where N is the total number of cascades and Pi = Pi(tp)−
Pi(to) is the incremental cascade size.

B. Performance Comparison

The performance of baselines and CasDO on three datasets
are summarized in Table III, from which we have the following
observations:
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TABLE III
PERFORMANCE COMPARISONS ON THREE DATASETS OVER TWO DIFFERENT OBSERVATION PERIODS

(O1): The proposed CasDO outperforms all previous models,
in terms of both MSLE and MAPE, for both application scenar-
ios (social and academic information diffusion) on cascade pop-
ularity prediction, demonstrating the benefits of capturing the
uncertainties between observations in continuous-time settings
and exploiting probabilistic diffusion to resist noisy observation
in modeling and learning the information propagation.

(O2): The performance gap between Feature-Deep and
Feature-Linear is quite small, suggesting the importance of
features in cascade prediction, if we have a set of representative
features. Notably, in some cases, feature-based methods and
diffusion model-based methods outperform some deep learning
models. However, their performance heavily depends on hand-
crafted features that are difficult to select for different scenarios
in practice.

(O3): DeepHawkes relies on the capability of time-series
modeling along the diffusion route to predict the information
popularity, without considering the topology information of
cascades. As previously observed [11], [13], it often overrates
the cascade size due to its rudimentary self-excitation mech-
anism [66]. Interestingly, LatentODE achieves better perfor-
mance than TimeSeries and DeepHawkes, verifying our mo-
tivation of modeling irregularly sampled information diffusion,
rather than treating the irregular events as fixed time intervals
widely adopted in RNN-based models.

(O4): Deterministic GNN-based approaches, such as CasCN,
CoupleGNN, CTCP, CasSampling and MINDS, exploit the
structural and temporal factors for cascade prediction showing
relatively well prediction performance. However, these methods
focus solely on learning local or global structures and ignore the

interactions between users in both graphs. More importantly,
they fail to account for diffusion uncertainty. DyDiff-VAE and
CasFlow, in contrast, explicitly utilize variational inference for
modeling the latent structure of information diffusion and there-
fore perform the best among baseline approaches. Nevertheless,
their models still sample cascades in fixed time intervals, which
limits the performance of learning temporal variances and de-
caying factors.

C. Ablation Study

We conduct ablation studies to investigate the effects of
different parts in CasDO, and consider the following variants
of CasDO.

– CasDO-LocalStruct and CasDO-GlobalStruct remove the
global and the local cascade node embedding Ec and Eg , re-
spectively.

– CasDO-Sum, CasDO-Pooling and CasDO-MLP utilize dif-
ferent strategies to process the global node embedding Ec and
local node embedding Eg . Specifically, CasDO-Sum utilizes a
sum operation, CasDO-Pooling employs average pooling, and
CasDO-MLP applies a linear layer.

– CasDO-TODE only uses T-ODE to output Z for modeling
cascades and predicting the cascade popularity, i.e., without
using the structure and evolution uncertainty representation
learning.

– CasDO-Diffusion and CasDO-ODE – the former only con-
siders the structural uncertainty representation learning, and
the latter only utilizes evolution’s uncertainty representation
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Fig. 5. Impact of four important hyper-parameters of CasDO on Weibo dataset (observation time is 1 h), measured by MAPE and MSLE.

learning. Both of the two variants use T-ODE to model temporal
characteristics for information cascade popularity prediction.

The lower part of Table III reports the performance
comparisons among CasDO and its variants: (1) CasDO-
LocalStruct shows considerably better performance than
CasDO-GlobalStruct on Twitter and Weibo, but the global struc-
ture is a more reliable predictor for APS. It indicates that specific
local structural features are beneficial to social cascade predic-
tion. Apparently, the combination of local and global graphs
indeed improves the performance. (2) In the investigation of
fusing the global and local cascade structural representations,
we have devised several variant models to analyze the influence
of different fusion strategies, including utilizing a sum operation,
average pooling, and a linear layer. As shown in Table III, we
observe a marginal decline in prediction performance when com-
pared to the original method of concatenation. This discovery
indicates that our CasDO model can be effectively substituted
with alternative representation fusion techniques. Furthermore,
it validates the scalability of our CasDO. (3) CasDO-Diffusion
and CasDO-ODEs consistently achieve better performance than
CasDO-TODE across all datasets. This result indicates that our
T-ODE approach can generalize state transitions to continuous-
time dynamics, which is sensitive to the initial state h0. In other
words, T-ODE alone cannot adequately model cascade uncer-
tainty, and therefore results in degenerated performance. (4)
CasDO-Diffusion performs slightly better than CasDO-ODEs,
suggesting that modeling the structural uncertainty is more
important than modeling the evolutionary uncertainty, although
the two types of probabilistic diffusion complement each other.

D. Analysis of Parameter Impact in CasDO

We now report the impact of several important parameters of
CasDO: the weight for latent ODEs losses, the dimensions of
cascade embedding, the dimensions of latent factors, and the
time steps of probabilistic diffusion. We only report the results
on Weibo dataset (with 1 h observation time) due to the same
trends observed on other datasets. Detailed results are explained
as follows:

1) Weight λ for ELBO: Recall that we gave a weight λ to
the losses of latent ODEs (cf. Eq (19)), which trades off
between supervised learning w.r.t. cascade popularity and
uncertainty learning during information propagation. We
can see that a smaller λ is desired for CasDO, which
implies the information prediction task is still heavily
dependent on labeled training for future prediction. It also
raises an interesting question, i.e., how to adaptively set
the uncertainty learning factor, which is left as our future
work.

2) Dimensions of latent factor and cascade embedding: We
change the dimensions of latent factors and cascade em-
bedding from 8 to 128. As shown in Fig. 5(b) and (c),
the best performance of CasDO is achieved when the
dimensions of latent factor is 64 and the dimension of
cascade embedding is 80.

3) Time steps of diffusion model: We varied the time steps
in the diffusion models from 1 to 64 and plot the results
in Fig. 5(d). We can observe that the best performance
was obtained when R = 8, which means a few steps of
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Fig. 6. Visualization of learned latent representations on Weibo and Twitter
datasets (observation time = 0.5h/1d) using t-SNE. Each point is a sample from
test cascades. The darker the point, the larger the value of the corresponding
feature.

diffusion is enough for CasDO to capture the structural
uncertainty.

4) Noise level βR of diffusion model: We experimented with
varying the noise level βR in the diffusion models, ranging
from 0.02 to 0.1. The corresponding results are plotted
in Fig. 5(e). Notably, we observed a minor fluctuation
in the model performance of CasDO as the value of βR

increased. This finding indicates that our model demon-
strates low sensitivity to the hyper-parameter βR. After
evaluating the model’s performance on the MSLE and
MAPE metrics, we determined that setting βR to 0.02
provides a balanced model performance.

E. Learning Interpretability

In this section, we investigate and interpret the performance
of CasDO on information cascade representation learning. To do
this, we select a few hand-crafted features related to the informa-
tion cascade that characterize either network or time properties
in the information diffusion process. In three respective rows of
Fig. 6, we plot the learned latent space of cascades for CasDO,
including the Weibo and Twitter dataset, using t-SNE [67]. In
each subfigure, each point in the plot represents a cascade in the
test set – cascades with similar latent vectors are close in the
plot. Then, to connect the hand-crafted features with the learned
cascade representations, we color each point in the plot by the
values of each feature (e.g., number of leaf nodes), implying a
connection between the learned representation and that network
property. Furthermore, we color the layout by the ground-truth
labels (i.e., cascade popularity) to study whether CasDO can
distinguish between distinct information cascades. Note that the
darker the point, the large the value of the corresponding feature
to the cascade, e.g., popularity (1st row), number of leaf nodes
(2nd row), and mean reaction time (3rd row).

As demonstrated in Fig. 6(a) and (b), it shows the latent
representations from the last MLP layer of CasDO and the color
denotes the cascade popularity. In Fig. 6(a) and (b), we can
observe that the visualizations show clear clustering effects. It
suggests that CasDO could distinguish between distinct infor-
mation cascades. For example, the colors of the right points
are darker than those of the left or top points. This result
shows a smooth representation-to-2D projection and meets the
long-tailed effect in the information diffusion process [68] that
infrequent cascades (e.g., outbreak tweets) are few. This means
that CasDO mappings the cascades’ latent representations to
corresponding labels (i.e., popularity).

Fig. 6(c) and (f) depict the latent representations from the
last MLP layer of CasDO. We can observe that CasDO pro-
duces smooth representation-to-2D projections in respect of both
structural and temporal patterns. The visualizations show clear
clustering effects compared to the ground truth popularity: with
larger number of leaf nodes and longer mean reaction time, the
popularity of cascade tends to be larger, e.g., the points clustered
to the left have fewer leaf nodes, while graphs on the right have
the most in Fig. 6(c) and (d). It implies that a Cascade graph
with a larger number of leaf nodes promotes the growth of its
ego-net. Indeed, when we compare the color scheme of Fig. 6(c)
and (d) with Fig. 6(a) and (b), we can see that the number of leaf
nodes in an information cascade is indeed positively correlated
with its growth. Furthermore, the visualization of mean reaction
time in Fig. 6(e) and (f) have similar color distributions with the
true popularity size Fig. 6(a) and (b). Note that in CasDO we
did not explicitly use these features for training, but the model
itself learns meaningful and explainable semantics of the corre-
sponding features correlated to the future popularity. This result
further demonstrates the benefits of incorporating the diffusion
model and T-ODE to capture the diffusion uncertainty between
observations when modeling the information propagation.

VII. CONCLUSION

We presented CasDO, a novel probabilistic framework for
end-to-end modeling and prediction of information cascade
growth. It does not rely heavily on feature engineering and can be
easily generalized, enabling the information cascade popularity
prediction by exploiting both structural and temporal informa-
tion. CasDO leverages continuous-time evolutionary variational
information diffusion model to handle the irregular-sampled
cascade events and exploit the uncertainties at both node level
and cascade level with diffusion model and latent ODEs. Our
experiments conducted on three real-world datasets demon-
strated the superior performance of CasDO over state-of-the-art
baselines. In our future work, we plan to extend CasDO with
location-awareness and enable the incorporation of urban geo-
spatial features in the prediction of cascades evolution.
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