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Citywide fine-grained urban flow inference (FUFI) problem aims to infer the high-resolution flow maps from

the coarse-grained ones, which plays an important role in sustainable and economic urban computing and

intelligent traffic management. Previous models tackle this problem from spatial constraint, external factors,

and memory cost. However, utilizing the new urban flow maps to calibrate the learned model is very chal-

lenging due to the “catastrophic forgetting” problem and is still under-explored. In this article, we make the

first step in FUFI and present CUFAR—Continual Urban Flow inference with augmented Adaptive knowledge

Replay—a novel framework for inferring the fine-grained citywide traffic flows. Specifically, (1) we design a

spatial-temporal inference network that can extract better flow map features from both local and global lev-

els; (2) then, we present an augmented adaptive knowledge replay (AKR) training algorithm to selectively

replay the learned knowledge to facilitate the learning process of the model on new knowledge without

forgetting. We apply several data augmentation techniques to improve the generalization capability of the

learning model, gaining additional performance improvements. We also propose a knowledge discriminator

to avoid the “negative replaying” issue introduced by noisy urban flow maps. Extensive experiments on two

large-scale real-world FUFI datasets demonstrate that our proposed model consistently outperforms strong

baselines and effectively mitigates the forgetting problem.
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puting→ Transportation;
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1 INTRODUCTION

Urban flow analysis, prediction, and inference are important applications of smart city develop-
ment and urban computing. They have been used for traffic management and urban transportation
planning [12, 20, 35, 39, 67], benefiting from the fast urbanization, vast data generated from IoT
devices, and the new computing technologies in recent years [24, 56, 60, 62, 68, 75]. Fine-grained

urban flow inference (FUFI), which tries to infer the high-resolution flow map from the corre-
sponding coarse-grained one, is proposed as an important step toward an environmentally friendly
and sustainable urban traffic system.

UrbanFM [35] is the first work that formulates the FUFI problem and proposes a distributional
upsampling module and an external factor fusing subnet for tackling the problem. Subsequent
works improve UrbanFM from several important aspects, e.g., the spatial constraint, external fac-
tors, and memory cost. Specifically, FODE [73] and UrbanODE [71]—based on neural ordinary

differential equations (ODEs)—are proposed to address the numerical instability problem in
FUFI by an affine coupling layer and a pyramid attention network. MT-CSR [30] addresses the
FUFI problem with incomplete urban flow map. DeepLGR [38] revisits the limitations of convo-

lutional neural network (CNN) and tries to learn global spatial dependencies and local feature
representations of the flow dynamics. UrbanPy [46] is the state-of-the-art FUFI model that extends
UrbanFM by proposing a cascading strategy based on the pyramid architecture, a propose-and-
correct component, and a new distribution loss.

Motivations. Despite the promising results achieved in prior works, several potential improve-
ments are worth exploring. First, although existing works have designed global-local architectures
such as pyramid mechanism [46, 71], global-local context module [38], and Transformer [37, 76]
to learn the long-range dependencies between local regions at different granularity, they are still
inefficient in modeling the spatial relations of urban flows while also considering the temporal
flow dynamics. Second, prior methods learn each FUFI dataset in isolation and retrain the entire
model with the newly obtained fine-grained urban flow maps, leaving the previous data unex-
ploited. One straightforward solution is to train all the data at once. However, it has two drawbacks:
(1) noise data may be introduced from the older flow maps that have different flow distributions;
(2) the computation overhead becomes unaffordable as time goes on. Another solution is to contin-
ually fine-tune the trained model from previous data on the new data, which is efficient and feasible
to take advantage of the learned urban flow knowledge. However, fine-tuning directly on the new
data is very prone to the “catastrophic forgetting” problem—i.e., much of the learned knowledge is
overridden upon learning the new knowledge—mainly due to the parameter-updating mechanism
(e.g., back-propagation), resulting in the model less generalized and less robust. This is also a result
of the “stability-plasticity” dilemma [9].

Present Work. We present CUFAR: Continual Urban Flow inference with Adaptive knowl-

edge Replay, as a novel way of inferring the fine-grained flow map with the help of previously
learned knowledge. Specifically, we design a simple yet effective inference network that extracts
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spatial-temporal flow map features from both local and global perspectives, enabling the model
to infer more accurate flow distributions. Then, we propose a general adaptive knowledge re-

play (AKR) training algorithm to continually and selectively replay the old knowledge to fa-
cilitate the learning process of the model on new data while also overcoming the “catastrophic
forgetting” problem. Moreover, we apply several data augmentation techniques on the replayed
knowledge to improve the generalization capability of the learning model and gain additional
performance improvements in the training phase. We further design an adaptive knowledge dis-
criminator to measure the flow distribution difference before and after the knowledge replaying,
which helps the model mitigate the “negative replaying” issue that may occur if noisy data are
introduced.

Extensive experiments (including ablation study and visualization) on two large-scale real-world
urban flow datasets demonstrate the effectiveness and robustness of CUFA over strong FUFI base-
lines. We have the following notable findings: (1) The proposed spatial-temporal inference net-
work uniformly improved the FUFI performance on different types of urban flow datasets, which
has a better capability for learning expressive flow map features. (2) The designed AKR train-
ing algorithm successfully alleviated the “catastrophic forgetting” problem in continual FUFI and,
consequently, improved the inference performance. It is worth noting that all baselines equipped
with AKR have better performance. (3) Interestingly, on TaxiBJ-P4 dataset, we both observed the
“negative replaying” and “overfitting” if the proposed knowledge discriminator and AKR are re-
moved, respectively. (4) Compared to the joint protocol, i.e., training all data at once, our approach
is efficient and even outperforms joint. We speculate this deficiency of joint is due to the noisy
samples introduced from previous data. The above findings verify our motivation and show that
utilizing the prior knowledge (properly) to facilitate the learning process of current knowledge is
a promising way toward a robust and sustainable urban transportation system. Our contributions
are summarized as follows:

— To the best of our knowledge, we are the first to formulate continual FUFI problem and
provide comprehensive analysis of recent FUFI methods on both traditional FUFI problem
and continual FUFI problem.

— We propose a novel FUFI method, CUFAR, which can infer the fine-grained flow map with
the help of previously learned knowledge. It consists of a better inference network and
an adaptive knowledge replay training algorithm to overcome the “catastrophic forgetting”
problem.

— We design a data augmentation powered adaptive knowledge discriminator to mitigate the
“negative replaying” issue, which measures the distribution discrepancy before and after the
knowledge replaying.

— We contribute a new continual FUFI dataset, TaxiNYC, which includes the taxi flows of New
York City spanning over three years. Extensive evaluations between CUFAR and strong base-
lines demonstrate the effectiveness of our proposed model on overcoming the catastrophic
forgetting problem and improving FUFI performance.

The rest of the article is organized as follows: Section 2 reviews the literature of urban flow pre-
diction and inference. In Section 3, we formulate the FUFI problem. We then describe the frame-
work and details of CUFAR in Section 4, which includes a global-local urban flow inference network
and an adaptive knowledge replay algorithm. Section 5 presents experimental settings and results,
including comprehensive ablation studies and case studies. At last, we conclude this article and
point out future directions. This article is an extension of Reference [63], previously presented at
the AAAI 2023 conference.
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2 RELATED WORK

In this section, we first review continual learning methods and provide necessary background
knowledge of them. Then, we introduce the literature of urban flow prediction and fine-grained
urban flow inference.

2.1 Continual Learning

Overcoming the catastrophic forgetting in artificial neural networks is attracting much research
attention [13] due to its significance for a dynamic system that has new data/tasks coming con-
tinuously. Continual learning aims to model a sequence of new tasks without forgetting the
knowledge of past tasks, which is a promising direction towards sustainable and robust neural
networks [45, 48, 72]. Early efforts on continual learning can be categorized into three types:
(1) Regularization-based methods impose restrictions when learning a new task to mitigate cat-
astrophic forgetting. They use specific loss functions to take these constraints on the parameter
updating process and consolidate previously learned knowledge [27, 34, 45]. (2) Parameter isolation

methods dedicate different model parameters to each task to prevent any possible forgetting [13].
When no constraints are applied to the size of the architecture, one can grow new branches for new
tasks while freezing the parameters of the old task or provide a model copy to each task [1, 13, 50].
However, the above-mentioned two types of methods face several drawbacks: First, they often im-
pose constraints when learning new tasks, which limits the generalizability of the model; second,
they cannot utilize the knowledge from old tasks to improve new task performance. (3) Replay-

based methods save the data of previous tasks in a memory buffer. When learning new tasks, they
replay the samples from the buffer and then mitigate the catastrophic forgetting of previous tasks
[6]. Compared to other continual methods, replay-based methods do not constrain the new task
optimization to prevent the interference of previous tasks, and they are more suitable for FUFI.
Motivated by replay-based methods, we design an adaptive knowledge replay algorithm for selec-
tively replaying the knowledge from previous tasks and finally improving the FUFI performance
on new tasks.

Continual learning is also closely related to data shift or concept drift [7, 16], which focuses
on the changes over time in data streams. In many non-stationary real-world applications, the
data distributions may change over time, and in consequence, cause unpredictability and perfor-
mance degradation. In Reference [33], the authors proposed a method to forecast the data distri-
bution evolution. A non-stationary Transformer is presented in Reference [42] to tackle the over-
stationarization problem in time series forecasting. To adapt to unprecedented volatility caused by
social events in human mobility modeling, an event-aware spatio-temporal network is designed
in Reference [57].

2.2 Urban Flow Prediction

Traffic flow analytics and predictions are widely used in intelligent transportation systems and are
powered by the advances in data mining and deep learning techniques, which play an important
role in traffic management [4, 5], human trajectory modeling [19, 70, 74], fine and urban planning
[55]. One of the most attractive research interests in traffic flow analytics is the urban/traffic flow
prediction that focuses on predicting the future traffic flows given historical flow observations
[23, 25]. Traditional urban flow prediction methods mainly used time-series-based traffic flows
collected from monitors to predict the future urban flows, e.g., statistics-based prediction model
ARIMA. However, these statistics methods cannot model spatio-temporal features [23, 29]. More
recently, deep learning–based methods are proposed to learn urban flow patterns from various per-
spectives (e.g., spatial and temporal dependencies, external factors). Recurrent and convolutional
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neural networks are widely used to address this problem. For example, ST-ResNet consists of a
residual neural network and residual convolutional units, aiming to jointly predict inflow and out-
flow of crowds in city grid cells [66]. AutoST leverages optional convolution operations to extract
multi-range spatio-temporal dependencies and uses learnable skip connections to fuse multimodal
features [32]. In Reference [36], the authors proposed STRN, which designs a global relation mod-
ule to efficiently learn global spatial dependencies and a meta learner for learning meta knowledge
to improve the model performance. With the developments of graph neural networks (GNNs),
researchers found that GNNs are ideally suited to traffic flow prediction due to their capabilities to
model non-Euclidean graph structures and capture spatial dependencies (e.g., road intersections
serve as nodes and road connections serve as edges, which naturally resembles a road network)
[17, 23]. Our problem differs from urban flow prediction in that it seeks to infer fine-grained urban
flows by giving the coarse-grained ones, rather than forecasting future urban flows.

2.3 Fine-grained Urban Flow Inference

Acquiring high-resolution urban flows citywide requires expensive maintenance and operational
costs for smart-city systems and applications [58, 59]. FUFI is proposed to reduce the number of
deployed surveillance devices and sensors while keeping the original data granularity unchanged
[35]. FUFI problem is beneficial for sustainable traffic management system. Despite its similarity to
single image super-resolution (SISR) [35, 73], FUFI possesses the following unique challenges:
(1) Spatial constraint. Different from SISR, FUFI problem has to obey the spatial constraint that
the sum of the flow volumes in a coarse-grained flow cell is strictly equal to the sum of flow vol-
umes in the corresponding region in fine-grained flow map. (2) External factors. Traffic flows are
greatly affected by many external factors, such as weather conditions, temperature, date and time,
and so on. These factors are important for inferring accurate fine-grained flow maps. (3) Spatio-

temporal continuity. Urban flow maps usually have similarities in continuous time systems, e.g.,
the road structures are identical, but the flow volumes are continually changing. Generally, SISR
does not has such continuous features. It can achieve better performance by learning the continu-
ous spatio-temporal features in FUFI. UrbanFM is the first work to formulate and solve the FUFI
problem. It proposed N 2-Normalization to handle the spatial constraint and proposed an external
factor fusing subnet to process external factors. Subsequent works improve UrbanFM from sev-
eral important aspects, e.g., the spatial constraint, external factors, and memory cost. Specifically,
to explicitly address the numerical instability issue in FUFI, FODE [73] and UrbanODE [71] uti-
lized neural ordinary differential equations (NODE) and proposed an affine coupling layer.
MT-CSR [30] addressed the FUFI problem in which the coarse-grained flow maps are sparse and
incomplete. DeepLGR [38] revisited the limitations of CNNs in solving urban flow–related tasks
and proposed to learn local feature representations and global spatial dependencies of the flow
dynamics. UrbanPy [46] is the state-of-the-art FUFI model that builds on UrbanFM by adding a
propose-and-correct component, a novel distribution loss, and a pyramid-based cascade architec-
ture. However, existing FUFI methods treat each flow map independently. When deploying such
methods in practical situations, they are prone to face the problem of “catastrophic forgetting”
when using new urban flow maps to calibrate the learned model, resulting in degenerated perfor-
mance or otherwise a heavy and inefficient joint model trained on all urban flow maps.

3 PROBLEM FORMULATION

In this section, we formally define the problem of FUFI. The mathematical notations frequently
used throughout the article are summarized in Table 1. In FUFI, we aim to infer the citywide fine-
grained flow map from the coarse-grained one. Given a city of interest, we divide the city’s map
M into grid-cells. For each cell, we record its traffic flows xi j ∈ R+ every τ minutes. The overall
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Table 1. Notations and Descriptions

Symbol Description

xi j Traffic flows in a grid of map
H ,W The height and width of coarse-grained maps
Xcд ,Xf д Coarse-grained map and fine-grained map
N Upscaling factor

H
local
cд ,H

local
f д

Coarse- and fine-grained feature maps of local regions

H
global

f д
,Hf д Fine-grained feature maps of global region, the output of spatial relation extractor

M,Msub Memory buffer and sub-memory buffer
S Size of memory bufferM
BM Size of mini-batch of the buffer
X

merge
cд ,X

merge

f д
Merged coarse- and fine-grained maps

X
DA
cд ,X

DA
f д

Data augmented coarse- and fine-grained maps

Fig. 1. Spatial constraint between coarse- and fine-grained flow maps in a local area of Beijing city.

traffic flows of M are denoted as X. Following existing works [35, 46], the FUFI problem and its
spatial constraint are defined as:

Definition 3.1 (Fine-grained Urban Flow Inference). Given a coarse-grained map Xcд ∈ R
H×W
+ ,

the FUFI problem is to infer the corresponding fine-grained flow map Xf д ∈ R
N H×NW
+ ; here, N is

an upscaling factor.

Definition 3.2 (Spatial Constraint). Different from image super-resolution, FUFI problem has to
obey a spatial constraint that the cell flow xi j of the coarse-grained map is strictly equal to the
sum of flows in the corresponding N × N cells of the fine-grained map, i.e.:

xi j,cд =
∑
i′j′

xi′j′,f д s .t .

⌊
i ′

N

⌋
= i,

⌊
j ′

N

⌋
= j, (1)

where i = 1, 2, . . . ,H and j = 1, 2, . . . ,W . An illustration of the spatial constraint is depicted in
Figure 1.

In traditional FUFI problem settings [31, 35], the learning model is retrained entirely every time
new urban data comes in, which belongs to the offline learning paradigm. Online learning, on the
contrary, dynamically and sequentially learns new data patterns, enabling an efficient and sus-
tainable prediction model that is also the target of the FUFI problem. However, online learning
algorithms such as continual learning and fine-tuning may face the challenge of catastrophic for-
getting when adapting to new data/tasks.1 In this work, we study the continual FUFI problem, i.e.,

1When there is no ambiguity, we interchangeably use data and task throughout the article.
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Fig. 2. The framework of the proposed inference network. It first extracts global-local map features from the

coarse-grained flow map along with external factors such as weather and date. Then, extracted flow map

features are combined with temporal features and an N 2-Normalization layer to infer the final fine-grained

flow map.

given a sequence of urban flow datasets ordered over time, we learn new knowledge with the help
of old knowledge, but without forgetting the old knowledge.

4 METHODOLOGY

We now illustrate the CUFAR methodology, which contains two critical components: (1) an infer-
ence network consisting of two feature extractors for learning the spatial-temporal relations of
urban flow maps from both global and local levels; (2) a specifically designed continual algorithm
that combines the experience replay strategy with an adaptive knowledge discriminator. Moreover,
we apply data augmentation techniques after replaying old knowledge. The framework of the in-
ference network is depicted in Figure 2, and the continual algorithm is described in Algorithm 1.

4.1 Spatial-temporal Inference Network

4.1.1 Spatial Relation Extraction. Urban road topological structures and the corresponding tem-
poral flow dynamics are extremely complex and cannot be parsed with simple rules. With the help
of CNNs, previous FUFI methods [35, 71, 73] learn global feature maps with shared kernel weights
to infer the fine-grained flow map. Moreover, they often adopted complex architecture design (e.g.,
overstacking residual layer, pyramid attentions, cascade architecture) and may lead to overfitting,
low calculating efficiency, and unstable gradient computation problems in the training phase. As
a result, these methods are inefficient to model the local area flow dynamics. To address this hur-
dle, we design a spatial relation extraction module to partition the flow map into smaller local
regions and use several standalone sub-models to separately infer the upscaled local maps. Specif-
ically, for H ′W ′ sub-regions, each sub-model consists of two convolution layers followed by a
PixelShuffle layer and an independent component (IC) layer. The first convolution layer has F
filters (3 × 3) and the second has FN 2 filters; recall that N is the upscale factor. The PixelShuf-

fle layer upscales the coarse-grained feature maps H
local,i
cд ∈ R

H

H ′
× W

W ′
×F N 2

to fine-grained ones

H
local,i
f д

∈ R
N H

H ′
× NW

W ′
×F . The IC layer [11] is composed of a batch normalization layer and a dropout

layer. It can whiten the mutual information and correlation coefficients between network neurons
and accelerate the speed of convergence. The global model is similar to the local sub-model but has
a larger filter size (9 × 9) in the first convolution layer. Its output is the global fine-grained feature

maps H
global

f д
∈ RN H×NW ×F . We then restore the undivided feature maps H

local
f д
∈ RN H×NW ×F from

local feature maps. At last, we concatenate the obtained feature maps as the input of the temporal

feature extractor: Hf д = [H
global

f д
; H

local
f д
] ∈ RN H×NW ×2F .
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4.1.2 Temporal Features Extraction. Various external conditions such as weather and date have
an influence on the distribution of citywide urban flows. Among them, time span is closely related
to flow volumes but largely ignored or dealt with as a normal external condition. To remedy this,
we propose a temporal feature extraction module based on convolutional sequences to capture
the influence of time factor on the traffic flow distribution. Specifically, we build K independent
convolutional layers (F filters, 3 × 3), each account for a specific time span in a day. The weights of
these layers are non-shared. Then, the fine-grained feature maps Hf д are fed into the correspond-

ing convolutional layer followed by an N 2-Normalization layer to obtain the desired fine-grained

flow map X̃f д ∈ R
N H×NW .

4.1.3 External Factors and N 2-normalization. As same as the one in UrbanFM [35], we adopt
several embedding layers to transform the external factors (except the time span factor) into low-
dimensional vectors and then use dense layers to reshape the vectors into a coarse-grained feature
map. Thereby, the input of our model is the concatenation of the coarse-grained flow map, external
feature map, and time span feature map. To obey the spatial constraint required by FUFI problem,
existing methods often adopt the N 2-Normalization as model’s last layer instead of adding new
losses. In CUFAR, we also use this normalization trick. The details of the external factors and
N 2-Normalization can be found in UrbanFM [35].

4.1.4 Optimization. The training objective of CUFAR is the widely used mean squared error

(MSE) between the inferred flow map and the ground truth:

L = | |X̃f д − Xf д | |
2. (2)

Next, we illustrate how we adaptively and continually learn new knowledge without forgetting
the old knowledge.

4.2 Adaptive Knowledge Replay

When we use the newly obtained urban flow maps to calibrate the trained model in FUFI (we denote
this process as learning on a task), e.g., fine-tuning on the new data, the learned knowledge tends
to be overridden by the new knowledge due to the parameter-updating mechanism (e.g., back-
propagation), resulting in catastrophic forgetting that lowers the inference performance. In this
work, we propose an adaptive knowledge replay (AKR) training method that continually and
selectively replays the old knowledge to help the learning process of the new task. AKR consists
of a memory buffer and an adaptive knowledge discriminator. The framework of AKR is depicted
in Figure 3.

4.2.1 Selective Memory Buffer. Prior works [6, 43, 49] show that one effective way to overcome
catastrophic forgetting is the experience replay, which saves the old data in a memory buffer and
does not constrain the optimization process. Inspired by experience replay, we use a memory buffer
M to reserve the learned urban flow maps from previous tasks, which has a max size S . In every
training iteration, we randomly sample a buffer mini-batch BM fromM. The sampled BM is then
merged with the original training batch B. Different from existing experience replay-based meth-
ods [6, 49], our designed selective memory buffer (1) does not retrospect current training data and
(2) contains a sub-memory bufferMsub of size S/2 for storing recent data on the new task. Specif-
ically, during the training on the first task, bufferM is filled and then updated by the reservoir
sampling algorithm [54]. During the training of subsequent tasks, the sub-memory bufferMsub

replaces the role of theM, i.e., we updateMsub with the new data and replay the old data from
M. Every time we train on new task, half of the data inM is randomly replaced by the data (from
the last task) inMsub. Therefore, the bufferM has more recent samples.
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Fig. 3. Framework of adaptive knowledge replay.

4.2.2 Data Augmentation. In our prior work [63], when we train models with AKR, we first re-
play past data from the memory bufferM and merge with current training data. We then calculate
the discrepancy between merged data and original training data, which is used to alleviate the in-
fluence of out-of-distribution noises when updating the model. During this process, we found that
utilizing data augmentation (DA) techniques on replayed data can improve the generalization
capability of the model and gain additional performance improvements. DA is proven as one of
the most effective ways to address over-fitting problem and boost prediction accuracy. It acts like
a regularizer and only brings small computational costs in the training phase [61]. Specifically, we
first merge the replayed data with current training data and get merged samples X

merge
cд and X

merge

f д
.

Then, we augment merged samples X
merge
cд and X

merge

f д
by randomly selecting one of the following

DA techniques:

— Cutout [14] is a regional dropout method, which randomly cuts regions in images to im-
prove the generalization performance of CNN-based models [64, 69]. In this work, for each
pixel in the flow map, we set the removing probability as 0.001.

— Mixup [65] extends sample distributions by incorporating prior knowledge into the training
sample via mixing two samples. It can alleviate the overfitting problem in SISR and enhance
the robustness of neural networks in the training phase [18, 65]. We blend the merged sample
and the random permutation sample of itself in our work.

— CutMix [64] extends Cutout by replacing the removed regions with a patch from another
image, which does not drop information of the training sample [8, 64]. Specifically, we ran-
domly select a patch of the flow map and then blend the corresponding region of the merged
sample and the random permutation sample of itself.

— CutMixup [61] combines both Mixup and Cutmix; it first blends two samples and then re-
places random region of the training sample. CutMixup benefits from minimizing the bound-
ary effect and the ratio of the mixed regions, achieving better performance compared to
other DA techniques. We implement CutMixup based on the simple combination of Mixup
and Cutmix.
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ALGORITHM 1: Adaptive Knowledge Replay (AKR).

Require: A sequence of tasks {T1,T2, . . . } containing coarse- and fine-grained flow maps Xcд and Xf д ,

bufferM andMsub.

1: M ← �,Msub ← �;

2: for Ti in {T1,T2, . . . } do

3: if T1 then

4: for sampled mini-batch B = {(X
j
cд ,X

j

f д
)}
|B |
j=1 do

5: FillM using the reservoir sampling algorithm;

6: for X
j
cд ∈ B do

7: X̃
j

f д
← Model(X

j
cд);

8: end for

9: θ ← MSELoss({X̃
j

f д
,X

j

f д
}
|B |
j=1); � Updating

10: end for

11: else � Starting to replay knowledge

12: ifMsub � � then

13: Replace half ofM withMsub and setMsub = �;

14: end if

15: for sampled mini-batch B = {(X
ori, j
cд ,X

ori, j
f д
)}
|B |
j=1 do

16: FillMsub using the reservoir sampling algorithm;

17: Sample BM from the bufferM;

18: {(X
merge, j
cд ,X

merge, j
f д

)}j ← B ∪ BM ;

19: BDA = Data Augmentation({(X
merge, j
cд ,X

merge, j
f д

)}j )

20: α ← d2
MMD
(BDA,B),θ0 ← θ ;

21: for X
DA, j
cд ∈ BDA do

22: X̃
DA, j
f д

= Model(X
DA, j
cд );

23: end for

24: θ1 ← MSELoss({X̃
DA, j
f д
,X

DA, j
f д
}B

DA

j=1 );

25: θ ← θ0 + α ∗ (θ1 − θ0); � Updating

26: end for

27: end if

28: end for

Researchers have proven that randomly applying several DA methods is better than solely ap-
plying one of them [61]. Inspired by this insight, we apply the above-mentioned DA methods on
merged samples to get X

DA
cд and X

DA
f д

. The augmented samples are then fed into the training model.

Before that, we will calculate the domain distance using maximum mean discrepancy, which we
will detail in the following subsection.

4.2.3 Adaptive Knowledge Discriminator. When replaying past data from the memory bufferM,
if the distribution of replayed urban flow maps greatly differs from the original distribution, then
“negative replaying” may occur. To mitigate this deficiency, we further introduce a maximum

mean discrepancy (MMD) [21] to measure the similarity between the replayed distribution and
original distribution. MMD is often used in domain adaptation and transfer learning to measure
the domain distance and constrain the representation space [2, 3, 40]. We use MMD as a distance
discriminator to prevent our model being affected by the out-of-distribution flow maps (e.g., un-
usual traffic flow distribution due to road accidents or lockdowns). Given two distributions—in
our case, the replayed samples X

DA
cд from data augmented batch and the samples X

ori
cд from original
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batch—the MMD distance is defined as:

dMMD(X
DA
cд ,X

ori
cд ) = sup

f ∈H

(E[f (P)] − E[f (Q)]) , (3)

where P ∼ X
DA
cд , Q ∼ X

ori
cд , and H indicates reproducing kernel Hilbert space (RKHS). We

define two kernel embeddings μp := E[k(·, P)] and μq := E[k(·,Q)]; here, k(·, ·) ∈ H . Then, the
MMD distance can be derived as:

d2
MMD(X

DA
cд ,X

ori
cд ) =

[
sup
‖f ‖H�1

〈
μp − μq , f

〉
H

]2

� sup
‖f ‖H�1



μp − μq



2

H
‖ f ‖2H =



μp − μq



2

H
. (4)

Since the above equation cannot be computed directly, we expand the kernel function and draw
i.i.d. samples P = {pi }

m
i=1 from X

DA
cд and Q = {qj }

n
j=1 from X

ori
cд . Then, the squared MMD can be

estimated as follows [3, 21]:

d2
MMD(P ,Q) =

1

m(m − 1)

m∑
i=1

m∑
j�i

k
(
pi ,pj

)
+

1

n(n − 1)

n∑
i=1

n∑
j�i

k
(
qi ,qj

)
−

2

mn

m∑
i=1

n∑
j=1

k
(
pi ,qj

)
. (5)

We then introduce three kernel matrices, KS,S , KT ,T , and KS,T , which represent the matrices of
source domain (P ), target domain (Q), and cross-domain data defined by k(·, ·) [47], respectively.
Then, we can rewrite Equation (5) as:

d2
MMD(P ,Q) = tr

( [
KS,S KS,T

KT ,S KT ,T

]
L

)
, (6)

where

(L)i j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

mm
, pi ,pj ∈ P

1
nn
, pi ,pj ∈ Q

−1
mn
, otherwise.

(7)

The range of d2
MMD is [0,+∞]. We then normalize the distance into (0, 1] by:

α = 2 −
2

1 + e−d2
MMD

. (8)

The larger the α , the higher the similarity, and α = 1 indicates that the two sample groups are
identical. When replaying the learned knowledge on new tasks, for each training iteration, let θ0

be the initial weights, θ1 be the trained weights, the final model weights θ are updated as:

θ = θ0 + α ∗ (θ1 − θ0). (9)

The overall training process of the proposed adaptive knowledge replay is sketched in Algorithm 1.

5 EXPERIMENTS

We now evaluate the effectiveness of our proposed spatial-temporal inference network and adap-
tive knowledge replay on continual FUFI problem. Source code and datasets are publicly released
at https://github.com/PattonYu/CUFAR
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Table 2. Dataset Statistics

Dataset TaxiBJ TaxiNYC

P1 time range 07/01/2013–10/31/2013 07/1/2014–11/30/2014

P2 time range 02/01/2014–06/30/2014 01/1/2015–05/30/2015

P3 time range 03/01/2015–06/30/2015 07/1/2015–11/30/2015

P4 time range 11/01/2015–03/31/2016 01/1/2016–05/30/2016

Time interval 30 minutes 1 hour

Xcд size 32 × 32 16 × 16

Xf д size 128 × 128 64 × 64

Number of maps P1: 3,060, P2: 3,559 P1: 3,672, P2: 3,624

P3: 3,492, P4: 4,244 P3: 3,672, P4: 3,648

Avg. flow volume P1: 12.438, P2: 14.809 P1: 6.207, P2: 6.159

P3: 16.309, P4: 13.078 P3: 5.396, P4: 5.520

Weather conditions 17 types 17 types

Temperature [−24.6◦C, 41.0◦C] [−6.0◦C, 33.0◦C]

Wind speed [0 mph, 48.6 mph] [0 mph, 18.6 mph]

5.1 Data Description

Experiments are conducted on two real-world large-scale datasets: TaxiBJ and TaxiNYC.

— TaxiBJ [35]. This dataset consists of four sub-datasets collected continuously for four years
(2013 to 2016) in Beijing, which contains about 3.3 billion real-world trajectory data points.
We denote four sub-datasets as TaxiBJ Task-1 to Task-4. In this dataset, the size of coarse-
grained map is 32 × 32, the size of fine-grained map is 128 × 128, and upscaling factor N
is 4.

— TaxiNYC. This is a new FUFI dataset that we collected from Taxi & Limousine Commission
of NYC.2 We select data from 2014 to 2016 with about 0.3 billion trajectory data points in total.
We divide the whole dataset into four separate sub-datasets and each sub-dataset consists of
five months’ data, the size of coarse-grained map is 16 × 16, the size of fine-grained map is
64 × 64, and upscaling factor N is 4. Following the settings of TaxiBJ, we also consider the
external factors in TaxiNYC, the meteorology data (e.g., the weather conditions, temperature,
and wind speed) are collected from website.3

All datasets are associated with external factors that may affect urban flow distributions. They
include: temperature, wind speed, weather, holiday, weekend, day of week, and hour of day. The
weather conditions include: sunny, cloudy, overcast, rainy, sprinkle, moderate rain, heavy rain,
rainstorm, thunderstorm, freezing rain, snowy, light snow, moderate snow, heavy snow, foggy,
sandstorm, dusty. Table 2 shows the statistics of TaxiBJ and TaxiNYC.

5.2 Baselines

We compare CUFAR with the following 10 methods on FUFI problem. They include 5 single-image
super-resolution approaches: SRCNN [15], VDSR [26], ESPCN [51], SRResNet [28], and DeepSD
[53]; and 5 state-of-the-art FUFI approaches: UrbanFM [35], DeepLGR [38], FODE [73], UrbanODE
[71], and UrbanPy [46]. The details of the 10 baselines are as follows:

— SRCNN [15]: is the first successful implementation of convolutional neural networks

(CNN) in SR problem, which directly learns the mapping between low-resolution and high-
resolution images and shows the promising results compared to the traditional SR methods.

2https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
3https://en.tutiempo.net
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— VDSR [26]: realizes real-time video super-resolution by leveraging VGG-net [52] as the back-
bone and achieves deep network structure with 20 depth, which also suggests that the large
depth will show a significant improvement in accuracy.

— ESPCN [51]: introduces a sub-pixel convolutional layer to aggregate features from low-
resolution space, which effectively replaces the bicubic filter in SR with a more complex
upsampling filter trained specifically for each feature map while also improving computa-
tional efficiency.

— SRResNet [28]: is a ResNet-based [22] SR method, which introduces the deep residual net-
work as the backbone and recovers photo-realistic textures from a large number of down-
sampled images on a public benchmark.

— DeepSD [53]: is inspired by the adaptation SR image processing techniques to statistical
downscaling, which enhances SRCNN with multi-scale input channels to maximize pre-
dictability in statistical downscaling and considers spatio-temporal nature of the climate
system.

— ESRT [44]: targets the challenges of using Transformer architectures in the realm of com-
puter vision, particularly the high computational cost and extensive GPU memory require-
ments. It is a hybrid model consisting of a CNN-based backbone and a Transformer-based
backbone.

— UrbanFM [35]: is the first work in solving FUFI problem and stacks residual structure net-
work as the backbone. It considers both spatial constraints and external conditions in flow
map inference and achieves impressive results compared to traditional SISR methods.

— DeepLGR [38]: extends UrbanFM with a global-local feature extraction module and revisits
the limitation of CNNs in learning the dynamic urban flow.

— FODE [73]: addresses numerically unstable gradient computation and huge memory cost
problems with neural ordinary differential equations (ODEs). It also introduces an aug-
mented distributional upsampling layer to enhance the influence of external factors on
inference.

— UrbanODE [71]: introduces a pyramid attention network to infer high-quality flow maps
based on neural ODEs. Besides, UrbanODE is a memory-efficient model and provides a bal-
ance between accurately inferring urban flow maps and efficient computation.

— UrbanPy [46]: extends UrbanFM by decomposing the original task into multiple sub-tasks
to address the insufficiency problem. By using cascading strategy based on pyramid archi-
tecture, UrbanPy achieves state-of-the-art results in inferring flow maps at higher upscaling
rates.

5.3 Evaluation Metrics

Following previous FUFI methods [35, 46, 73], we use commonly used regression metrics including
mean squared error (MSE), mean absolute error (MAE), and mean absolute percentage

error (MAPE):

MSE =



X̃f д − Xf д




2
, (10)

MAE =



X̃f д − Xf д




, (11)

MAPE =



 X̃f д − Xf д

Xf д




, (12)

where X̃f д is the inferred fine-grained flow map and Xf д is the ground truth.
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Table 3. Hyper-parameters in CUFAR

Parameter Search space

Batch size B 16
Buffer mini-batch BM {1, 2, 4, 6, 8}
Filter size F {32, 64, 128}

Learning rate 1e−4

Memory buffer size S {100, 200, 500, 1,000, 1500}
Temporal conv layers K {15, 24}
Upscaling factor N 4

Selected values are marked in bold.

5.4 Hyper-parameter and Implementation

All datasets are divided into training, validation, and test set in a ratio of 2:1:1. The hyper-
parameters used in CUFAR and their corresponding values or search spaces are listed in
Table 3. Hyper-parameters of baselines are set to their preferred values indicated in their papers. Al
experiments are conducted on RTX 3090 with PyTorch. The optimizer is Adam, learning rate is 1e−4,
filter size F is 128, temporal conv layers K is 15 (hourly from 7 AM to 10 PM) for TaxiBJ and 24
(the whole day) for TaxiNYC, the division H ′ andW ′ of sub-regions are 4, memory buffer size S is
1,000, batch B and BM ’s sizes are 16 and 2, respectively. We use group convolution to implement
the spatial relation extractor for multi-threaded computing; the group is H ′W ′ = 16. Experiment
results we report are the best of five runs of all methods. We note that we omit the results of SISR
baselines on TaxiNYC, since their performances are significantly worse than FUFI baselines.

5.5 Training Protocols

We use four training protocols:

— Single-task: learns each task in isolation.
— Joint: learns previous tasks and new task at once, which costs a lot of computations when

there are many tasks.
— Fine-tune: learns new task with previous task’s trained model as initial, but is prone to cata-

strophic forgetting problem.
— continual: learns new task with our designed AKR algorithm to prevent forgetting problem.

For each dataset, it is divided chronologically into four sub-datasets, each representing a task (from
P1 to P4). In real-world scenarios, practitioners may periodically update the trained model by incor-
porating newly collected data (a new task). The frequency of model updating may vary, ranging
from weekly, monthly, to yearly, depending on specific monitoring requirements. Fine-tune and
continual protocols learn new task with the help of previous task(s), but do not require retraining
on them.

5.6 Evaluation Results

5.6.1 Spatial-temporal Inference Network. Table 4 shows the inference performance of our
model and 10 baselines on four tasks of each dataset using the single-task protocol, i.e., we in-
fer the fine-grained urban flow without fine-tuning or knowledge-replaying on the new task. We
can observe CUFAR achieves the best results through all metrics on all tasks, which verifies the
effectiveness of our designed spatial-temporal inference network.

5.6.2 Adaptive Knowledge Replay. Next, we evaluate the proposed AKR training algorithm and
see if we can mitigate catastrophic forgetting while also improving the inference performance.
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Table 4. Inference Performance between CUFAR and Baselines on TaxiBJ and TaxiNYC

Datasets when Using the single-task Protocol

Method
Task-1 Task-2 Task-3 Task-4

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

T
a

x
iB

J

SRCNN 18.464 2.491 0.714 21.270 2.681 0.689 23.184 2.829 0.727 14.730 2.289 0.665

ESPCN 17.690 2.497 0.732 20.875 2.727 0.732 22.505 2.862 0.773 13.898 2.228 0.711

VDSR 17.297 2.213 0.467 21.031 2.498 0.486 22.372 2.548 0.461 13.351 1.978 0.411

DeepSD 17.272 2.368 0.614 20.738 2.612 0.621 22.014 2.739 0.682 15.031 2.297 0.652

SRResNet 17.338 2.457 0.713 20.466 2.660 0.688 21.996 2.775 0.717 13.446 2.189 0.637

ESRT 17.252 2.210 0.552 20.472 2.664 0.688 22.001 2.751 0.699 13.521 2.210 0.649

UrbanFM 16.372 2.066 0.335 19.548 2.284 0.328 21.243 2.398 0.336 12.744 1.850 0.311

DeepLGR 17.125 2.103 0.339 21.217 2.386 0.350 23.563 2.497 0.351 13.390 1.916 0.345

FODE 16.473 2.142 0.403 19.884 2.377 0.395 21.425 2.490 0.417 12.840 1.947 0.396

UrbanODE 16.342 2.135 0.406 19.648 2.357 0.394 21.177 2.460 0.408 12.668 1.929 0.391

UrbanPy 16.082 2.026 0.329 19.025 2.232 0.318 20.810 2.333 0.313 12.336 1.810 0.304

CUFAR 14.991 1.952 0.306 18.259 2.186 0.301 19.309 2.243 0.289 11.681 1.758 0.288

T
a

x
iN

Y
C

UrbanFM 14.641 1.756 0.338 13.289 1.674 0.325 12.615 1.603 0.334 10.883 1.522 0.326

DeepLGR 14.512 1.745 0.322 13.686 1.692 0.329 12.709 1.604 0.327 11.063 1.516 0.312

FODE 14.700 1.777 0.354 13.305 1.695 0.350 12.616 1.639 0.362 11.098 1.556 0.349

UrbanODE 14.685 1.775 0.352 13.405 1.703 0.350 12.452 1.629 0.357 10.957 1.539 0.335

UrbanPy 14.323 1.718 0.321 13.484 1.654 0.315 12.268 1.566 0.322 10.910 1.503 0.311

CUFAR 13.905 1.685 0.309 13.005 1.626 0.310 12.100 1.550 0.316 10.643 1.482 0.303

Results of the five SISR baselines are from Reference [35]. The best results of each dataset are marked in bold.

Since SISR baselines performed poorly, we omit them in the remaining experiments. We apply AKR
on all FUFI methods (denoted as continual), and the results are shown in Table 5. The comparison
shows that continual-based models consistently outperform fine-tune-based models, supporting
our motivation that overcoming catastrophic forgetting is vital for the FUFI problem. In addition,
fine-tune and continual both considerably outperform single-task (compare the results of Table 4
and Table 5), which suggests that utilizing the knowledge from previous tasks is an effective way
to boost the performances of models on new tasks. Interestingly, UrbanFM with continual fought
back to surpass the UrbanPy on Task 4.

When we incorporate the data augmentation techniques into the adaptive knowledge discrim-
inator, we observe additional performance improvements on all datasets. We speculate this is
because the data augmentation reduces the strong dependencies between the coarse- and fine-
grained flow maps in the merged sample batch and, as a result, relieves the model from over-fitting
on specific urban flow patterns.

5.6.3 Catastrophic Forgetting. To better visualize the forgetting phenomenon on new tasks, we
show the training process of our model by using fine-tune and continual protocols in Figure 4.
We have the following findings: For fine-tune model, its performances on old tasks are severely
degenerated, an obvious consequence of the “catastrophic forgetting.” The older the task, the more
knowledge it forgets. For continual model with our designed AKR algorithm, it successfully alle-
viates the forgetting problem when learning new tasks. In addition, the fine-tune model also faces
the overfitting issue on Task-4 at Stage-4 (the validation loss starts to rise), and beyond our ex-
pectation, the continual model performs surprisingly well. This result suggests another potential
benefit of the ARK algorithm.

5.6.4 Backward Preventing Forgetting. To investigate whether our trained model (as well as
baselines) on the latest task is forgetting the old knowledge of previous tasks, we use the model
trained continually on Task-1→Task-2→Task-3→Task-4 and test its performance on Task-1,
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Table 5. Performance Comparison between fine-tune and continual Protocols

on TaxiBJ and TaxiNYC Datasets

Method
Task-2 Task-3 Task-4

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

T
a

x
iB

J

fi
n

e-
tu

n
e

UrbanFM 19.162 2.257 0.322 20.499 2.341 0.325 12.285 1.814 0.314
DeepLGR 20.571 2.336 0.334 21.845 2.427 0.345 12.820 1.858 0.318
FODE 19.251 2.323 0.379 20.511 2.410 0.387 12.414 1.895 0.369
UrbanODE 19.070 2.302 0.371 20.275 2.375 0.372 12.182 1.862 0.361
UrbanPy 18.822 2.208 0.317 20.117 2.293 0.314 12.088 1.800 0.307
CUFAR 17.746 2.151 0.293 18.915 2.219 0.287 11.486 1.745 0.290

co
n

ti
n

u
a
l

UrbanFM 18.477 2.215 0.312 19.809 2.290 0.314 11.919 1.778 0.302
DeepLGR 19.202 2.292 0.342 19.892 2.331 0.330 11.977 1.819 0.314
FODE 18.799 2.297 0.370 20.012 2.369 0.373 11.997 1.852 0.359
UrbanODE 18.735 2.289 0.374 19.779 2.340 0.361 11.924 1.836 0.352
UrbanPy 18.286 2.193 0.311 19.503 2.264 0.314 11.958 1.787 0.304
CUFAR 17.616 2.141 0.292 18.840 2.213 0.285 11.420 1.735 0.283
+DA 17.562 2.137 0.289 18.785 2.211 0.282 11.388 1.731 0.280

T
a

x
iN

Y
C

fi
n

e-
tu

n
e

UrbanFM 12.657 1.638 0.320 11.929 1.557 0.325 10.261 1.47 0.309
DeepLGR 13.011 1.650 0.319 11.801 1.553 0.322 10.627 1.497 0.307
FODE 12.930 1.673 0.342 11.929 1.585 0.338 10.411 1.503 0.325
UrbanODE 12.979 1.674 0.339 12.035 1.583 0.342 10.345 1.507 0.330
UrbanPy 12.934 1.628 0.327 11.607 1.527 0.327 10.219 1.466 0.315
CUFAR 12.472 1.599 0.305 11.570 1.515 0.308 10.147 1.448 0.297

co
n

ti
n

u
a
l

UrbanFM 12.387 1.609 0.312 11.367 1.521 0.319 9.899 1.450 0.302
DeepLGR 12.439 1.617 0.318 11.323 1.518 0.310 10.007 1.455 0.300
FODE 12.411 1.631 0.330 11.496 1.542 0.326 10.108 1.480 0.316
UrbanODE 12.397 1.626 0.325 11.371 1.538 0.325 10.073 1.475 0.318
UrbanPy 12.524 1.605 0.312 11.386 1.516 0.312 9.991 1.449 0.303
CUFAR 12.153 1.580 0.302 11.199 1.500 0.307 9.959 1.438 0.298
+DA 12.072 1.577 0.300 11.053 1.491 0.305 9.805 1.431 0.294

All models are initially trained on Task-1. Then, each model is fine-tuned on new tasks. Continual indicates our

designed AKR is applied. Best results of each dataset and protocol are marked in bold.

Task-2, and Test-3. For each model, we, respectively, use fine-tune and continual protocols for
training. Experiments are conducted on TaxiBJ, and the performances of CUFAR and five FUFI
baselines are shown in Table 6. We can observe that the models under fine-tune protocol face
severe forgetting problem on all three tasks. Specifically,

— Compared to five baselines, our proposed CUFAR achieves the lowest inference errors, which
demonstrates the effectiveness of our designed spatial-temporal inference network for FUFI.

— Continual protocol universally improves the inference performances of all methods by non-
trivial margins, which shows that our proposed adaptive knowledge replay training algo-
rithm successfully alleviates the “catastrophic forgetting” on previous tasks and is a general
algorithm that improves all methods. In general, CUFAR and baselines are less forgetful on
close tasks (e.g., Task-3) and more forgetful on remote tasks (e.g., Task-1), which is in line
with our expectation. On Task-1, the MSE of CUFAR with fine-tune protocol drops about
22.07% compared to single-task. In contrast, the MSE of CUFAR with continual protocol is on
par with the CUFAR with single-task.
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Table 6. Results of Catastrophic Forgetting Problem on Previous Tasks

Method Protocol
Task-1 Task-2 Task-3

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

UrbanFM single-task 16.372 2.066 0.335 19.548 2.284 0.328 21.243 2.398 0.336

fine-tune 18.800 2.176 0.345 22.239 2.388 0.326 20.667 2.341 0.318

continual 15.605 2.016 0.335 18.915 2.242 0.326 19.421 2.281 0.311

DeepLGR single-task 17.125 2.103 0.339 21.217 2.386 0.350 23.563 2.497 0.351

fine-tune 19.382 2.216 0.356 23.613 2.479 0.351 22.075 2.433 0.335

continual 15.555 2.020 0.339 18.763 2.253 0.338 19.263 2.294 0.336

FODE single-task 16.473 2.142 0.403 19.884 2.377 0.395 21.425 2.490 0.417

fine-tune 18.907 2.244 0.405 22.340 2.454 0.382 20.864 2.414 0.370

continual 15.815 2.079 0.382 19.100 2.296 0.365 19.614 2.337 0.358

UrbanODE single-task 16.342 2.135 0.406 19.648 2.357 0.394 21.177 2.460 0.408

fine-tune 18.949 2.223 0.396 22.292 2.423 0.368 20.596 2.372 0.351

continual 15.633 2.057 0.374 18.768 2.264 0.352 19.335 2.305 0.343

UrbanPy single-task 16.082 2.026 0.329 19.025 2.232 0.318 20.810 2.333 0.313

fine-tune 18.683 2.155 0.346 22.127 2.365 0.330 20.411 2.312 0.314

continual 15.147 1.979 0.325 19.404 2.244 0.319 19.589 2.269 0.310

CUFAR single-task 14.991 1.952 0.306 18.259 2.186 0.301 19.309 2.243 0.289

fine-tune 18.300 2.121 0.327 21.262 2.312 0.308 19.371 2.245 0.288

continual 14.982 1.950 0.301 18.094 2.166 0.290 18.570 2.199 0.280

Specifically, we train each model by fine-tune protocol or continual protocol sequentially on Task-1, Task-2,

Task-3, and Task-4. Then, we test the trained model on the previous three tasks, i.e., Task-1, Task-2, and Task-3.

If the trained model’s performance is inferior than the single-task protocol (train independently from scratch on

each task as a non-forgetting reference), then we say that a certain degree of forgetting has occurred. Best

results are marked in bold.

Fig. 4. Visualization of catastrophic forgetting phenomenon. Lines are validation losses (MSE). Each row

represents a task. Each column represents a training stage. Each stage, we train the model on current task

(by fine-tune or continual protocol) and validate model on current task and (if any) previous tasks. As we

continuously learn on new tasks, the performance of the fine-tune model on previous tasks drops severely

due to catastrophic forgetting, while continual largely alleviates this issue.

— For baselines, the designed AKR training algorithm is more effective for DeepLGR and Ur-
banODE and is less effective for UrbanPy. For example, UrbanODE with continual improves
the counterpart (UrbanODE with fine-tune) by 19.75%, 20.54%, and 12.74%, in terms of MSE
on Task-1, Task-2, and Task-3, respectively.

— We have shown that the knowledge learned from previous tasks can improve the learning
process of the new task (cf. Table 5). The results of Table 6 further demonstrate the future
knowledge can also improve the performance of the model on old tasks.
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Fig. 5. Ablation study results in terms of MSE.

Combining all the findings above in our context, we would expect CUFAR is able to learn better
hidden urban flow map features via simultaneously training on the (1) current flow distributions
and (2) previous flow distributions replayed from the memory buffer, resulting in a more robust and
generalized FUFI model. Next, we provide additional experimental results to facilitate the under-
standing of the behaviors of our model, including ablation study, parameter sensitivity, complexity
and convergence analyses, and error visualizations.

5.7 Experimental Analysis

5.7.1 Ablation Study. To investigate the contributions of each component in CUFAR, we con-
duct ablation studies on the following four variants of CUFAR; experiments are conducted on
TaxiBJ:

— w/o SE: removing the spatial relation extractor, we evaluate this variant under single-task

protocol.
— w/o TE: removing the temporal feature extractor, we evaluate this variant under single-task

protocol.
— w/o AKR: removing the adaptive knowledge replay, i.e., we use fine-tune protocol.
— w/o MMD: removing the maximum mean discrepancy, we evaluate this variant under con-

tinual protocol.

Figure 5 shows the ablation results and we have following remarks: (1) The spatial and temporal
feature extractors in CUFAR contribute the most. The combination of the two extractors (i.e., the
single-task model) is superior than either of them alone, demonstrating the effectiveness of the
designed inference network. (2) The results of CUFAR along with CUFAR w/o MMD show that
the knowledge learned from previous tasks can significantly improve the FUFI performance. Be-
sides, the designed MMD distance in AKR avoids the “negative replaying” issue and enhances the
robustness of the algorithm (as the results of Task-4 show).

5.7.2 Joint Protocol. Training all current and previous tasks simultaneously is often considered
to be a powerful approach and serves as a soft upper bound of performance [13]. However, as we
show in Figure 6, joint training has two main shortcomings: (1) When there are too many tasks, the
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Fig. 6. Comparison between joint and continual (ours) in terms of convergence time and inference error.

Fig. 7. Sensitivity of buffer mini-batch size BM and memory buffer size S . MSE results are reported in each

grid. The rotated numbers represent average training time (s/epoch) of each column/row. Cell colors indicate

model performance.

computation overhead becomes unaffordable, e.g., joint spends 3×more training time than CUFAR
on four tasks. (2) Noisy data introduced from older tasks may hinder the inference performance
if no selection strategy is applied. We can see from the figure that CUFAR equipped with AKR
surpasses its joint counterpart on Task-3 and Task-4.

5.7.3 Parameter Sensitivity. Two crucial hyper-parameters in CUFAR are the buffer mini-batch
size BM and the memory buffer size S , which control the strength of the sample replaying. We vary
BM from {1, 2, 4, 6, 8} and S from {100, 200, 500, 1, 000, 1, 500}. Figure 7 shows the mean MSE of
Task-2 to Task-4 on TaxiNYC, results are the mean of five runs. We have several notable findings:
(1) Different settings of S and BM have a slight influence on training time: The larger the setting
values, the more computational consumption of each training epoch. Moreover, the size of BM
has a greater impact on training time than the size of S , because BM enlarges training batch size.
(2) The performance of the model increases as S increases. The improvements are more evident
when BM = 8, where we can see that the model performs the worst when S = 100 among all
combinations but soon becomes the best when S = 1, 500. This phenomenon demonstrates that
the model performs better with a largerBM and a larger S . (3) The effect of changes inBM on model

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 34. Publication date: October 2024.



34:20 X. Xu et al.

Fig. 8. Complexity comparison of CUFAR and five FUFI baselines. The X-axis and Y-axis represent the aver-

age epoch training time and average MSE over Task-2 to Task-4 on TaxiNYC. The color of markers indicates

memory usage in the training phase. The + mark indicates we train the model under continual protocol

rather than fine-tune. We can observe that our proposed CUFAR+ model is located in the lower left corner

of the figure, achieves the lowest prediction error, and also has low computational time cost.

Table 7. Complexity Comparison, Results Are the Mean MSE of

Task-2 to Task-4 on TaxiNYC

Method Protocol Memory Cost Avg Time MSE

UrbanFM fine-tune 3,965 MB 6.092 s 11.616

continual 4,040 MB 8.060 s 11.218

DeepLGR fine-tune 3,607 MB 6.808 s 11.813

continual 3,708 MB 8.893 s 11.256

FODE fine-tune 3,062 MB 4.803 s 11.757

continual 3,192 MB 5.193 s 11.338

UrbanODE fine-tune 4,102 MB 13.960 s 11.786

continual 4,180 MB 15.170 s 11.280

UrbanPy fine-tune 6,772 MB 11.335 s 11.586

continual 6,878 MB 15.614 s 11.301

CUFAR fine-tune 3,858 MB 5.080 s 11.374

continual 4,018 MB 6.122 s 10.984

joint 4,430 MB 22.880 s 10.405

Continual indicates our AKR is applied.

performance shows a non-consistent trend and is beyond our expectation. Specifically, a larger BM
decreases the performance when S is small (e.g., 100 or 200) and increases the performance when
S is large (e.g., 1,000 or 1,500).

5.7.4 Complexity Analysis. We now empirically analyze the space and time complexities of our
model and baselines. In comparison with baselines, AKR algorithm is the new training burden that
increases memory and time consumption. The complexity comparison results are shown in Table 7
and Figure 8. Specifically, we have the following observations: (1) Our proposed AKR introduces
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Table 8. Results of Forward Knowledge Generalization Learning

Method
Task-2 Task-3 Task-4

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

LwF 17.942 2.166 0.291 19.660 2.262 0.290 11.743 1.767 0.296

EWC 17.812 2.147 0.291 18.977 2.219 0.288 11.536 1.744 0.286

ER 17.742 2.145 0.290 18.861 2.217 0.287 11.485 1.740 0.284

AKR 17.562 2.137 0.289 18.785 2.211 0.282 11.388 1.731 0.280

We sequentially train and validate CUFAR with different continual learning methods on Task-2, Task-3,

and Task-4 using the same initial model trained on Task-1. Best results are marked in bold.

Table 9. Results of Backward Stability Learning

Method
Task-1 Task-2 Task-3

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

LwF 16.072 2.017 0.316 18.396 2.189 0.297 18.413 2.206 0.286

EWC 18.212 2.109 0.322 21.378 2.310 0.303 19.450 2.243 0.283

ER 15.561 1.988 0.309 18.555 2.194 0.294 18.633 2.208 0.283

AKR 14.982 1.950 0.301 18.094 2.166 0.290 18.570 2.199 0.280

We test the models trained on Task-4 in Table 8 on the previous tasks (Task-1, Task-2, and Task-3). Best

results are marked in bold.

only a small increase in GPU memory cost about 100 MB for saving samples in the memory buffer
M and sub-memory buffer Msub. (2) The average training time of each epoch increases about
0.4–4 s when we apply AKR on the model with fine-tune protocol. (3) AKR consistently improves
performance of each model. The most significant improvements occurred on DeepLGR and Urban-
ODE, lowering the MSE about 0.5. (4) As a soft upper-bound method, Joint protocol achieves the
best performance, however, requires significantly more training time compared to other protocols.

5.7.5 Comparison to Other Continual Learning Approaches. To verify the effectiveness of our
proposed AKR continual learning algorithm compared to other continual learning methods for
the FUFI task, we apply the following representative continual learning methods on CUFAR:

— ER (Experience Replay) [10]: is a traditional experience replay-based continual learn-
ing approach. It maintains a memory of past experience to replay while training on new
tasks, thereby reducing knowledge forgetting. Unlike AKR, ER lacks an adaptive knowledge
discriminator, which may result in the retention of noisy samples that lead to “negative
replaying.”

— LwF (Learning without Forgetting) [34]: is a knowledge distillation-based continual learn-
ing method, aiming to acquire new task knowledge without the need for direct access to old
data.

— EWC (Elastic Weight Consolidation) [27]: is a regularization-based continual learning
approach that mitigates catastrophic forgetting by constraining changes in important model
parameters that learned from previous task(s).

Table 8 and Table 9 present the comparison results of these continual learning approaches in terms
of new task forward generalization and old task backward stability, respectively. Our findings
demonstrate that the AKR algorithm outperforms the other methods in both forward task learn-
ing and backward task retention, indicating superior FUFI inference performance. Specifically, ER
exhibits lower inference errors compared to LwF and EWC, supporting our expectation that replay-
based methods are more adept at handling the continual FUFI problem. LwF, constrained by its
loss function, shows limited generalization when learning new tasks. EWC performs well for the
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Fig. 9. Convergence speeds of several models on TaxiBJ.

forward learning tasks; however, its backward retention significantly declines, illustrating a pro-
nounced disparity between “stability” (retention of old knowledge) and “elasticity” (adaptability to
new knowledge). In summary, the AKR algorithm not only excels in adapting to new knowledge
but also effectively mitigates catastrophic forgetting of old knowledge, distinguishing itself from
other continual learning approaches on the FUFI problem.

5.7.6 Convergence Analysis. Figure 9 shows the validation loss (MSE) during the training phase
of CUFAR and baselines on all tasks. Our model converges smoother and faster than baselines
while also having the lowest validation losses. For ODE-based models FODE and UrbanODE, their
loss curves oscillated drastically, probably because of the gradient explosion that occurs when
solving the ODE functions. UrbanPy, an extension of UrbanFM, employs a cascading strategy that
progressively upsamples the coarse-grained flow map, outperforming other baselines. It is worth
mentioning that all baselines are less stable on Task-3. This result may be explained by the fact
that the flow volumes in TaxiBJ-P3 are larger than that in other tasks. Surprisingly, the loss curve
of CUFAR keeps steady and smooth as well as on other tasks.

5.7.7 Error Visualization. Figure 10 shows the inference errors | |X̃f д − Xf д | |
2 of CUFAR and

baselines on a case flow map of TaxiBJ under single-task protocol; the brighter the pixels, the
larger the errors. Specifically, in Figure 10(a), we can observe that the CUFAR has much less bright
pixels than baselines. On certain areas (we marked them in the white boxes), the upper one is
Zhongguancun district; many companies and universities are located there, and the lower one is a
national highway that connected two overpasses. Both two districts have high traffic flow volumes
and impact the inference performance greatly. In Figure 10(b), we plot 3D inference error bars of
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Fig. 10. Visualization of Errors. Fig. 10(a) shows the error maps of different models on TaxiBJ under single-

task protocol, where brighter pixels indicate larger errors. Fig. 10(b) shows the 3D error bars of CUFAR on

TaxiNYC under single-task and continual, where brighter and higher bars indicate larger errors.

a case map. Compared to single-task protocol, continual obviously has less higher bars, and its
average error is lower than that of single-task, which shows that CUFAR’s inferred fine-grained
flow map is more accurate.

6 CONCLUSIONS

In this work, we presented CUFAR, a novel continual framework for fine-grained urban flow in-
ference. We propose to utilize the learned knowledge from previous tasks to enhance the learning
process of the model on new task(s). We designed a spatial-temporal inference network and a
general adaptive knowledge replay training algorithm that helps the model alleviate “catastrophic
forgetting” and “negative replaying” issues when adapting to new urban flow maps. Extensive
experiments on four large-scale real-world FUFI datasets demonstrated the effectiveness and ro-
bustness of CUFAR over state-of-the-art baselines. In our future work, we plan to investigate: (1)
extending our solution to other urban flow applications/datasets [41]; (2) finding new ways to se-
lectively replay the old samples that are beneficial for the new task with a theoretical guarantee;
(3) designing a new knowledge discriminator that considers the external factors (e.g., date and
weather) when calculating the flow distribution difference.
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