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Abstract—Source localization, as a reverse problem of infor-
mation dissemination on graphs, is crucial for tracking social
rumors, detecting computer viruses, and identifying epidemic
spreaders. However, existing methods face challenges due to the
inherent uncertainty of graph diffusion, as the same diffused ob-
servations may start with diverse sources. Furthermore, general
graph diffusion models did not consider important properties
of the diffusion process. To address these issues, we propose
a denoising diffusion probabilistic model (DDPM)-based source
localization framework, DDSL. In this framework, we consider
two distinct characteristics of information dissemination, namely
source prominence and monotone increasing, and present a
source localization-oriented invertible graph neural network
(GNN). To capture the propagation uncertainties of sources, we
design a DDPM-based source generator to generate effective
and diverse sources for enhancing model’s robustness. Our
experiments demonstrate the effectiveness of the proposed model
in improving source localization performance.

Index Terms—Graph diffusion, source localization, informa-
tion dissemination

I. INTRODUCTION

Social networking services (e.g. Twitter, Weibo, and Face-
book) provide convenient and rapid ways for information dis-
semination, facilitating people’s lives and work. However, they
also lead to misinformation and malware spreading quickly
and widely on the Internet. To address these challenges,
source localization [1] plays a crucial role by identifying the
source(s) of the observed dissemination processes. This ap-
proach helps to trace and control the spread of misinformation
and malware, mitigating their negative impact across various
domains, including detecting misinformation and rumor in
social networks [2], controlling epidemic in infectious diseases
and isolating failures smart grids. Correspondingly, source
localization has attracted significant interest from researchers
and engineers and various localization methods have been
proposed.
Related work. Diffusion source localization is to identify
the source(s) of a diffusion process using observations such
as the node states and timing of node infections [1]. One
group of the existing works [3], [4], [5] in the field of
diffusion source localization utilize centrality measures within
tree-like networks to identify potential propagation sources.
For example, in [3] the authors model rumor spreading in
a network with the susceptible-infected (SI) model and then
using a maximum likelihood estimator to calculate the rumor

centrality scores according to the topology of diffusion graph.
Another group of works leverages network sensor injection
for source tracking. These methods offer a unique and dy-
namic approach to source localization by strategically placing
sensors to track and identify sources of diffusion step by step.
This approach is exemplified in works such as [6], [7], [8],
where sensor-based tracking is used for various propagation
models, e.g., SI or susceptible-infected-recovered (SIR).

While these methods are effective, they suffer from high
computational costs and complexity. To address these chal-
lenges, graph neural networks (GNNs) have been proposed
as a promising solution for source localization. GNNs excel
in learning graph diffusion patterns and have shown strong
performance in tasks like node classification and link predic-
tion [9], [10]. They effectively capture complex relationships
within diffusion networks, making them suitable for source
localization problems [11]. Huang et al. [12] introduced a
two-stage approach using Position-aware GNNs for positional
embeddings and a denoising diffusion model to handle the
graph inverse problem. Other GNN-based models, such as
GCNSI [13] and IGCN [14], utilize graph convolutional
networks and attention mechanisms to enhance performance
and reduce computational complexity in detecting multiple
rumor sources.

In addition, source localization can be formulated as an
inverse problem of graph diffusion. This has led to the devel-
opment of invertible graph diffusion models that reverse inputs
and outputs for source localization tasks [15], [16]. However,
these models often overlook key diffusion characteristics, such
as source prominence—the idea that nodes surrounded by a
higher proportion of infected nodes are more likely to be
sources [17]—and monotone increasing, where each node
should contribute non-negatively to the diffusion process [18].
IVGD [16] introduces a graph residual network with Lipschitz
regularization to infer sources in generic diffusion models,
but it does not account for the uncertainty associated with
diffusion sources.
Challenges. While existing GNN methods achieved promising
results on graph source localization, they still face several
notable challenges. First, traditional graph algorithms to locate
diffusion sources require exhaustive searches through the
topology space, such as traversing all possible paths for a
specific source node. This is computationally expensive for
large-scale networks and overlooks key aspects like temporal979-8-3503-1090-0/23/$31.00 © 2023 IEEE



dynamics, node relationships, and variability in diffusion
patterns [19]. Second, most learning-based methods use deter-
ministic learning, which fails to capture the diffusion uncer-
tainty associated with the sources. This is due to the inherent
variability in diffusion processes, where different sources may
lead to similar patterns over time. Such uncertainties arise
from network structures and the stochastic nature of diffusion,
influenced by random or external factors [20].

To address these issues, we propose a denoising diffu-
sion probabilistic model (DDPM)-based source localization
framework, DDSL. In this framework, to enhance the effi-
ciency of source inference, we design a source localization-
oriented invertible GNN to invert the graph diffusion process.
Compared with typical invertible networks [15], [16], we
incorporate two important properties – the source prominence

[13] and monotone increasing [18] – into the invertible
GNN for enhancing model’s learning capability on source
localization. Here, source prominence refers to the sources
tend to be surrounded by infected nodes [17], while monotone
increasing indicates that infected nodes will monotonously
increase during diffusion [18]. These properties allow the
GNN to effectively capture key characteristics of the diffusion
process and improve the robustness of source localization.

To further address the challenge of diffusion uncertainty,
we integrate a DDPM-based source generator that creates
diverse source vectors maintaining the same observations as
the input. By considering input source vectors, centrality [19],
and observations as conditions in the generative process [21],
our generator offers a more robust approach than traditional
probabilistic models like VAEs [11], [22]. The generated
vectors help the invertible GNN better handle diffusion uncer-
tainty. The invertible GNN and DDPM-based source generator
are optimized interactively, where each component refines the
quality of the generated vectors and extracted features, leading
to improved localization performance.

The main contributions of our paper are summarized as
follows:

• We propose a DDPM-based source localization frame-
work, DDSL, which effectively generates diverse source
vectors to help GNNs capture diffusion uncertainty.

• We present a source localization-oriented invert-
ible GNN, incorporating distinct diffusion characteris-
tics—source prominence and monotone increasing—into
the network to improve source inference.

• We validate our model on four real-world datasets with
varying propagation patterns, demonstrating its effective-
ness and analyzing its strengths and limitations.

II. METHODOLOGY

In this section, we first formally define the task of graph
source localization and then elaborate on the proposed DDSL .

A. problem statement

Graph Source Localization: Consider an undirected graph
G = (V, E), where V is the node set and E is the edge set.
Let Y = {y0, . . . , yi . . . } 2 R|V| be the infection state vector,
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Fig. 1. Overview of the framework.

yi = 1 if node i is infected; otherwise yi = 0. Let X =
{x0, . . . , xi} 2 R|V| be the source vector, xi = 1 if node i is
source node; otherwise xi = 0. The source localization is to
identify source nodes X given Y in G.

B. Architecture Overview

An overview of our model, DDSL, is depicted in Fig. 1.
It consists of two main components: a source localization-
oriented invertible GNN and a DDPM-based source generator.

The model leverages two key properties of graph diffusion:
the prominence of the source and the monotonous increase
of dissemination. This is used to construct an invertible
GNN designed for source localization, efficiently inferring the
source vector from an input observation.

The DDPM-based source generator takes a real source
vector as input and generates diverse source vectors with
the same observations as the input source vector. To ensure
observations of generated source vectors invariant, we impose
the real source vector, centrality, and observation information
on the generative process.

The generated source vectors are then used to train the
invertible GNN. Since they all have the same observations
with the original input source(s), the trained invertible GNN is
expected to have the ability to capture diffusion uncertainties
and further improve the model performance.

The DDPM-based generator and invertible GNN are opti-
mized interactively. In each loop, the generator first adopts the
initialized invertible GNN to extract observation information
for generating source vectors, which are then used to train
the invertible GNN. As the loop continues, the weights of
both extracted observation information and generated source
vectors improve in quality.

The inverse GNN and DDPM-based source generator are
optimized together in a two-step process. First, the invertible
GNN is trained on real source vectors and observations. The
generator then uses this trained GNN to extract observation
features, which serve as conditions for its generative process.
Second, the generated source vectors, together with the real
ones, train the GNN. This process is repeated in multiple
loops, with increasing weights assigned to both extracted
features and generated sources, improving their quality. Con-
sequently, the GNN can capture uncertainties more effectively,
enhancing overall performance.



C. Invertible GNN

To address the limitations of existing methods that over-
look key diffusion characteristics like source prominence and
monotone increasing, we propose an enhanced invertible GNN
model. This model integrates these features to better capture
the inverse diffusion processes for source localization. Next,
we detail the invertible network architecture and its design
components.

1) Invertible network architecture: In particular, to con-
sider these distinct characteristics, we divide the invertible
GNN H into two parts, feature construction F 1(·) and
propagation G 2(·). We define the residual blocks for the
GNN as

�
f(x) + x

�
/2 and integrate the residual block into

these structures. Now we provide the mathematical guarantees
on the invertibility of the invertible GNN:

Theorem 1. Let H = F 1 � G 2 : R|V| ! R|V|
denotes a

GNN with residual blocks
�
f(x)+x

�
/2 and

�
g(x)+x

�
/2 in

F 1 and G 2 , respectively. Then, the GNN H is invertible if

Lip(f) < 1 and Lip(g) < 1, where Lip(·) is the Lipschitz-

constants.

Proof. All the residual blocks we used are implemented by
a composition of non-linear activation � and linear mappings
Wx+ b, where � denotes the non-linear activate function and
W denotes the weight matrix of linear mappings. Hence, we
have Lip(f) < 1 and Lip(g) < 1 if kWik2 < 1, where
kWik2 is the spectral norm of the linear matrix Wi in f or
g. We need to conduct spectral norm to each linear layer Wi,
and then multiply a hyper-parameter c 2 (0, 1) to them [23].
Therefore, GNN H with the normalized linear layers W̃i is
invertible.

The forward process (i.e. information dissemination) of the
invertible GNN can be described as:

Xattr = F 1(X) = (f(X) +X)/2, (1)

Ŷ = G 2(Xattr) = (g(Xattr) +Xattr)/2, (2)

where X denotes input the source vector, Xattr is the con-
structed feature, and  1 and  2 are the parameters of feature
construction network F and propagation network G, respec-
tively. Based on this process, we calculate the forward loss of
information dissemination with Mean Square Error:

LD = kY � Ŷ k22, (3)

where Y is the real observation of input source vector X .
2) Source prominence: Directly mapping sources to dif-

fused observations ignores the source prominence rules of the
graph topology. This can result in an insufficient expression
of the structural information of the dissemination graph. Thus,
we incorporate the source prominence rule into the training
process. The feature of source prominence can be captured
by LPSI method [13], and the iteration equation of label
propagation in LPSI can be written as:

Gm+1 = ↵SGm + (1� ↵)Y, (4)

where Gm denotes the infection state at iteration m, S is
the regularized Laplace matrix of the graph G, and ↵ is
the parameter to control the influence factors between nodes
and their neighbors. The feature of source prominence is
constructed by the convergent state of the iteration above.

We add this information into Xattr in the invertible GNN.
The reverse process with the prominence feature on Xattr
according to Eq. (4) is:

Ŷ ⇤ = (1� ↵)Xattr(I � ↵S), (5)

where Ŷ ⇤ is derived from Xattr with the feature of source
prominence, which should be close to Y ⇤ in order to make
F 1(·) in the invertible GNN learn the features of graph
topology. Here Y ⇤ is derived from Y where the uninfected
nodes are set as �1. Meanwhile, the constraint of source
prominence is also considered according to Eq. (5). The loss
function is defined as:

LP = kY ⇤ � Ŷ ⇤k22. (6)

3) Dissemination monotone increment: In addition, we
impose the monotone increasing constraint [18] on the dis-
semination. That is to say if one source set Xi is the subset
of another source set Xj , the probability of each node being
infected pinf(Xi) from Xi should be smaller than source set
Xj . This constraint is described as:

8 Xi ✓ Xj , s. t. pinf(X
i)  pinf(X

j). (7)

As it is difficult to model the inequality constraints directly,
we convert the constraint into a Lagrangian form as follows:

LM = �
��max{0, pinf(X

i)� pinf(X
j)}

��2
2
, 8 Xi ✓ Xj , (8)

where � is the regularization hyper-parameter, pinf(Xi) and
pinf(Xj) are estimated from an Xi and many Xj sampled in
each batch by the invertible GNN, respectively.

4) Source inference: At last, we combine the objective
functions in the training phase together for training the in-
vertible GNN:

Ltrain = LD + LP + LM. (9)

We directly feed the diffused observation Y into the trained
invertible GNN to infer the sources X̂ through fixed point
iterations:

z0 = Y, · · · , zn = 2Y � g(zn�1) (10)

X0 = zn, · · · , X̂n = 2zn � f(X̂n�1), (11)

where n is the number of iterations, z0 and X0 denote the
initial states, f and g denote the linear mappings in F 1 and
G 2 , respectively, and X̂n is the output of the inverse process.

D. DDPM-based Source Generator

To further capture the uncertainty in graph diffusion pro-
cesses, we employ DDPM as the basis for our source gen-
erator. This generator produces diverse source vectors that
share the same observed characteristics as the input source,



enhancing the invertible GNN’s ability to manage diffusion
uncertainty.

The generative process of DDPM must satisfy several con-
ditions to ensure consistency between the generated sources
and the original observations: (1) Generated sources should
closely resemble the original real sources. (2) They should
adhere to network centrality regulations, where potential
propagation sources are more likely to be centrally located
in diffusion graphs [19]. (3) The generated sources should
replicate the given observations.

To achieve this, these conditions are integrated into the
reverse diffusion process of DDPM to generate source vectors
that meet these criteria.

As shown in Fig. 1, the generator adopts the forward
process to add noises into the real source vector xreal to form
a prior xT , which is fed into the reverse diffusion process
to generate a new source vector via gradual denoising, i.e.,
xT ! xt ! xt�1 ! x0. The denoising process iteratively
imposes centrality information and observation features on the
latent variables. This forces the generated source vectors to
have the same diffusion observations as the original source
vectors.

1) Source vector condition: We first impose the real source
vector xreal on the reverse generative process. Noises are added
into xread to form prior xT using the forward process:

xT =
p
↵̄Tx

real +
p
1� ↵̄T ✏, (12)

where ↵̄T =
QT

t=1(1 � �t), and �t is a fixed variance
schedule [21]. According to the Markov chain, the conditional
reverse diffusion process aims to predict xt�1 based on xt and
xreal. After adding the condition xreal, the reverse process of
the generator becomes:

p✓(x̂
t�1|xt, xreal) = N (x̂t�1;µ✓(x

t, xreal, t), �̃tI), (13)

where µ✓(x̂t, xreal, t) is the estimated mean of the conditional
reverse process, and �̃t is a fixed constant. The reverse process
starts with Gaussian noise xT , and generates a clean sample
x0 by sampling reverse steps p✓(x̂t�1|xt, xreal).

To parameterize µ✓(xt, xreal, t), we train a neural denois-
ing model f✓(xt, xreal, t) to predict the noise vector ✏. The
objective LD is:

ExobE(✏,t)

h��f✓(xt, xreal, t)� ✏
��2
2

i
, (14)

where µ✓(xt, xreal, t) can be derived from f✓(xt, xreal, t):

µ✓(x
t, xreal, t) =

1
p
at

✓
xt � 1� atp

1� at
f✓(x

t, xreal, t)

◆
.

(15)
Consequently, the generative process is defined as:

x̂t�1 =
1

p
↵t

✓
xt � 1� ↵tp

1� ↵̄t
f✓
�
xt, xreal, t

�◆
+
q
�̃tz,

(16)

where z ⇠ N(0, I), implying that each generation step is
stochastic.

2) Centrality and observation conditions: Besides the con-
straint of approaching real source vector, we further con-
sider the centrality and observation information as two new
conditions and impose them into the generative process.
Towards this purpose, we formulate the centrality scores and
observation features.

Centrality scores describe the node influence on prop-
agation, widely adopted to identify potential propagation
sources [19], [24], [25]. We combine eccentricity and close-
ness [24], [19] to calculate centrality scores C. Since source
nodes tend to be located in the center regions, we impose
this condition on the generative process, i.e., the node with
a higher centrality score has a greater probability of being
the source node. The observation features O extracted from
the invertible GNN also describe the probability of being the
source node. To combine C and O together, the generative
process of producing xt�1 is defined as:

max
�
(1 + C)x̂t�1 � Cavg, 0

 

+max
�
(1 + h1(l)O)x̂t�1 �Oavg, 0

 
, (17)

where Cavg and Oavg denote the averages of C and O,
respectively, h1(l) is a monotone increasing weight function,
and l is the loop times. The reverse generative process with
these conditions are used to manufacture a new source vector
that has the same observation as the input source but also
expresses diffusion uncertainties.

E. Joint Optimization

After obtaining the generated source vectors XG, we fed
them into the forward process in Eq. (2) to compute obser-
vation ŶG. The forward loss of generated sources is defined
as:

LG = kY � ŶGk22. (18)

Coupled with the combined losses in Eq. (9), the final objec-
tive is:

LG
train = LD + LP + LM + h2(l)LG, (19)

where h2(l) is a monotone increasing function similar to
h1(l). The invertible GNN is first trained based on the real
source vectors and then in each loop of the generation it
extracts observation features as the condition exerted on the
generative process for generating new source vectors. We note
in the initial loops, both h1(l) and h2(l) have smaller values
since features and vectors are assigned lower weights. Along
with the loops progresses, larger weights are assigned to them
and finally, we can obtain high-quality source vectors for
improving the inference performance.

III. EXPERIMENTAL RESULTS

A. Experimental Settings

Dataset. To ensure consistency and comparability with base-
line methods, we selected four commonly used real-world
diffusion datasets. These datasets provide diverse network



TABLE I
DATASET STATISTICS

Name # Nodes # Edges Avg Degree

Jazz 198 2,742 27.7
Network Science 1,589 13,532 17.29
Cora-ML 2,810 7,981 5.68
Power Grid 4,941 6,549 2.67

structures and diffusion scenarios for evaluating the perfor-
mance of our model. The statistics of the datasets are shown
in TABLE I.

• Jazz [26]: A collaboration network of Jazz bands.
• Network Science (NS) [27]: A co-authorship network

of scientists working on network theory.
• Cora-ML (CML) [28]: A citation network contains com-

puter science research papers.
• Power Grid (PG) [29]: A topology network of the

Western States Power Grid in the US.
Since we only have graph topology information, following

previous works [11], [16], we randomly select 10% of the
nodes as sources and simulate the graph diffusion based on
the SI and SIR propagation protocols with enough iterations.
The choice of 10% is commonly adopted in related works as it
offers a balance between sparse and dense diffusion scenarios,
providing sufficient challenge for source localization while
keeping the complexity manageable. This setting also allows
for consistent and comparable experimental conditions across
different datasets, ensuring that the results are not biased by
varying dataset characteristics. The ratio of training and test
sets is 9:1.
Metrics. We use four metrics frequently used in classification
tasks to evaluate the model performance: Precision (PR),
Recall (RE), F1-score (F1), and ROC-AUC (AUC). These
metrics serve as the evaluation protocol.
Baselines. We use three strong source localization baselines:

• LPSI [17]: a label propagation-based source identifica-
tion model, which predicts the rumor sources without
knowing the underlying information propagation;

• GCNSI [13]: a GCN-based source identification method,
which adopts GCN layers to learn latent node embed-
dings to identify multiple rumor sources;

• SL-VAE [11]: a probabilistic approach which utilizes
VAEs to tackle source localization.

B. Performance Evaluation

The experimental results are shown in TABLE II and
TABLE III, where we compare our model with the baselines
under SI and SIR propagations, respectively. (1) For SI,
our model significantly outperforms LPSI and GCNSI, and
achieves comparable performance compared to SL-VAE. As
for CML and PG which have a large number of nodes, our
model outperforms SL-VAE by 4% on average. We speculate
this is because as the network size grows, the uncertainty
of the diffusion becomes larger and our model is capable to
identify more accurate sources in such networks. Our model’s

performance on Jazz under SI is slightly lower than desired,
which might be due to the high average node degree of Jazz

compared to other datasets – nodes with many connections in
the graph increase the randomness of the infection and make
the uncertainty more complicated. Moreover, DDSL relies on
the centrality to generate uncertainty sources, higher node
degrees smooth the centrality features and consequently im-
pact the generation process. (2) For SIR, DDSL outperforms
all three baselines especially on Jazz, CML and NS. This
indicates our model’s performance is more robust under SIR.
Furthermore, all three baselines perform worse under SIR
than SI. This is because the diffusion process of SIR is more
complex than SI’s.

TABLE II
PERFORMANCE OVER BASELINES UNDER SI MODEL

Jazz Network Science

Methods PR RE F1 AUC PR RE F1 AUC

LPSI 0.105 0.478 0.171 0.484 0.423 0.604 0.497 0.837
GCNSI 0.158 0.436 0.232 0.642 0.137 0.224 0.171 0.475
SL-VAE 0.719 0.947 0.818 0.978 0.599 0.935 0.729 0.949
DDSL 0.571 0.892 0.781 0.975 0.602 0.922 0.742 0.934

Cora-ML Power Grid

Methods PR RE F1 AUC PR RE F1 AUC

LPSI 0.155 0.595 0.246 0.667 0.454 0.495 0.473 0.933
GCNSI 0.118 0.361 0.178 0.538 0.141 0.347 0.209 0.504
SL-VAE 0.571 0.899 0.697 0.941 0.589 0.932 0.721 0.944
DDSL 0.593 0.947 0.744 0.950 0.611 0.921 0.735 0.933

TABLE III
PERFORMANCE OVER BASELINES UNDER SIR MODEL

Jazz Network Science

Methods PR RE F1 AUC PR RE F1 AUC

LPSI 0.115 0.363 0.169 0.501 0.136 0.432 0.207 0.561
GCNSI 0.141 0.373 0.205 0.641 0.104 0.351 0.161 0.543
SL-VAE 0.503 0.787 0.613 0.789 0.571 0.942 0.709 0.951
DDSL 0.571 0.888 0.762 0.946 0.582 0.922 0.734 0.927

Cora-ML Power Grid

Methods PR RE F1 AUC PR RE F1 AUC

LPSI 0.107 0.477 0.175 0.498 0.486 0.472 0.478 0.582
GCNSI 0.115 0.338 0.172 0.532 0.113 0.237 0.153 0.503
SL-VAE 0.582 0.919 0.711 0.930 0.580 0.933 0.714 0.947
DDSL 0.593 0.924 0.755 0.929 0.597 0.917 0.732 0.929

C. Ablation Study

To investigate the contributions of each module in DDSL,
we design four variants: (1) DDSL w/o cent which removes
the centrality information from our model; (2) DDSL w/o

dmi which removes the dissemination monotone increment
constraint from the invertible GNN; (3) DDSL w/o diff which
removes generated source vector from our model and only use
the invertible GNN, and (4) DDSL w/o sp which removes the
source prominence from the invertible GNN. The performance
changes on four real-world datasets under SI propagation
are shown in Fig. 2. In general, the removal of any module
in our model decreases the performance, demonstrating that
both modules significantly contribute to the overall efficacy



of the model and both modules collaborate with each other
in inferring the diffusion sources. Specifically, we found:
(1) DDSL w/o diff and DDSL w/o cent have the worst
performance among four variants, this implies that central-
ity reflects a node’s importance within a network, directly
impacting the model’s ability to identify the source node.
Meanwhile, incorporating uncertainty into the model captures
the complexity and diversity of the source node’s propagation
behavior, allowing for more accurate source identification. The
model’s significant performance drop in the absence of these
factors further demonstrates their necessity in graph source
localization; (2) the performance of DDSL w/o sp is better than
DDSL w/o dmi, which suggests source prominence is more
beneficial than the monotone increasing, which nevertheless,
still brings a slight improvement for source localization.
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Fig. 2. Ablation Study of DDSL under SI.

IV. CONCLUSION

We propose DDSL, a novel DDPM-based source localiza-
tion framework to address the uncertainty problem in reverse
graph diffusion. We designed an invertible GNN that incor-
porates the source prominence and monotone increasing into
graph neighborhood aggregation. Moreover, a DDPM-based
source generator is presented to generate effective diverse
source vectors to tackle the uncertainty problem. Experiments
show the efficacy of our model compared to strong baselines.
For future works, we plan to extend our method to more
complex propagation models other than SI and SIR.
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