

# Improving Multimodal Social Media Popularity Prediction via **Selective Retrieval Knowledge Augmentation**

### Motivation

**Existing**: Existing approaches treat user-generated content (UGC) prediction as an isolated process, overlooking interconnected nature of UGCs.

**Direction**: Using retrieval-augmented technique to enhance UGC contextual learning is a promising direction.

However: (1) A simple retrieval strategy that relies solely on semantic similarities cannot fully reflect the contextual information of complex social UGCs. (2) Not all retrieved UGCs may be truly relevant to the query UGCs, inevitably introducing noises.

### Solution

- **Retrieval Knowledge Augmentation**: We choose to retrieve relevant UGCs to enhance the contextual information for the query UGC for multimodal social media popularity prediction.
- Meta Retriever: We not only consider multimodal UGC semantics, but also social contexts of UGCs by incorporating diverse metadata.
- Selective Refiner: We design a new measure, termed Relative Retrieval Contributions to Prediction (RRCP), to quantifies the gains in prediction of the retrieved UGCs.

VL-GNNs: To effectively aggregate the retrieved knowledge, we introduce a vision-language graph neural networks module, coupled with an RRCP-Attention-based prediction network.

### Main Results on Three Social UGC Datasets

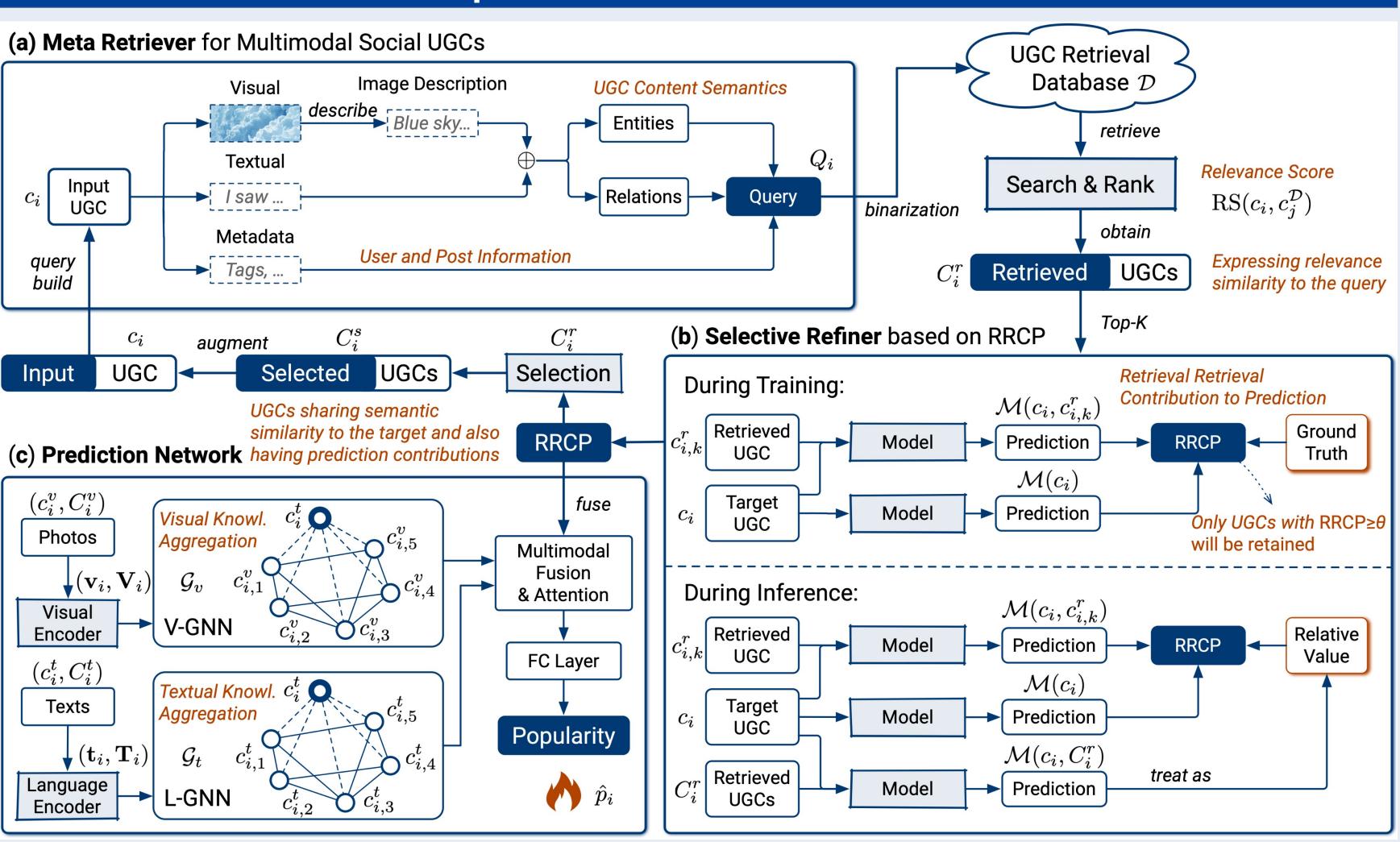
Significant Performance Improvements: Combining the meta retriever, selective refiner, and VL-GNN-based prediction module, our proposed SKAPP surpasses the baselines by a large margin.

| Method             | Туре      | ICIP                     |                          |                          | SMPD                     |                          |                          | Instagram                |                          |                          |
|--------------------|-----------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|                    |           | MSE                      | MAE                      | SRC                      | MSE                      | MAE                      | SRC                      | MSE                      | MAE                      | SRC                      |
| SVR                | Feature   | 1.9009                   | 0.8941                   | 0.5241                   | 6.2996                   | 2.0208                   | 0.2163                   | 7.0534                   | 1.9695                   | 0.4035                   |
| HyFea              | Feature   | 1.9013                   | 1.0181                   | 0.4497                   | 4.7429                   | 1.7080                   | 0.4677                   | 4.7132                   | 1.6924                   | 0.4708                   |
| MFTM               | Feature   | 1.8970                   | 0.9772                   | 0.4156                   | 4.0222                   | 1.5481                   | 0.5849                   | 4.3073                   | 1.6132                   | 0.5321                   |
| CLSTM              | Deep      | 1.8724                   | 0.9823                   | 0.4654                   | 3.9143                   | 1.5005                   | 0.5888                   | 4.2431                   | 1.5882                   | 0.5396                   |
| HMMVED             | Deep      | 1.8556                   | 0.9497                   | 0.4524                   | 3.7154                   | 1.3636                   | 0.6352                   | 4.2461                   | 1.6017                   | 0.5385                   |
| DLBA               | Deep      | 2.2290                   | 1.0097                   | 0.3614                   | 4.8693                   | 1.7021                   | 0.4387                   | 5.1425                   | 1.7527                   | 0.4007                   |
| MASSL              | Deep      | 1.9446                   | 0.9278                   | 0.4499                   | 5.5670                   | 1.8427                   | 0.5271                   | 7.8583                   | 2.2274                   | 0.5188                   |
| BLIP               | Deep      | 2.0646                   | 0.9961                   | 0.3603                   | 4.3884                   | 1.6340                   | 0.5269                   | 5.2436                   | 1.8058                   | 0.3762                   |
| CBAN               | Deep      | 1.8098                   | 0.9309                   | 0.4727                   | 4.0443                   | 1.5123                   | 0.5754                   | 4.2808                   | 1.5894                   | 0.5426                   |
| NIPA               | Retrieval | 1.9999                   | 0.9980                   | 0.3989                   | 4.2538                   | 1.6532                   | 0.4086                   | 4.0209                   | 1.5565                   | 0.5696                   |
| MMRA               | Retrieval | 1.7600                   | 0.8684                   | 0.5439                   | 3.5119                   | 1.3730                   | 0.6423                   | <u>3.9456</u>            | 1.5070                   | 0.5806                   |
| SKAPP<br>(improv.) | Retrieval | <b>0.9662</b><br>39.61%↑ | <b>0.6367</b><br>26.68%↑ | <b>0.6965</b><br>28.06%↑ | <b>1.8196</b><br>48.19%↑ | <b>0.8249</b><br>39.51%↑ | <b>0.8414</b><br>31.00%↑ | <b>2.0936</b><br>46.94%↑ | <b>1.0369</b><br>29.06%↑ | <b>0.8272</b><br>42.47%↑ |

Table 2: Social media popularity prediction performance comparison between our proposed SKAPP model and eleven baselines on three large-scale real-world datasets. The best results are marked in bold and the second best are underlined.

**Xovee Xu, Yifan Zhang, Fan Zhou, and Jingkuan Song** University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China xovee.xu@gmail.com, yifanzhang@std.uestc.edu, fan.zhou@uestc.edu.cn, jingkuan.song@gmail.com

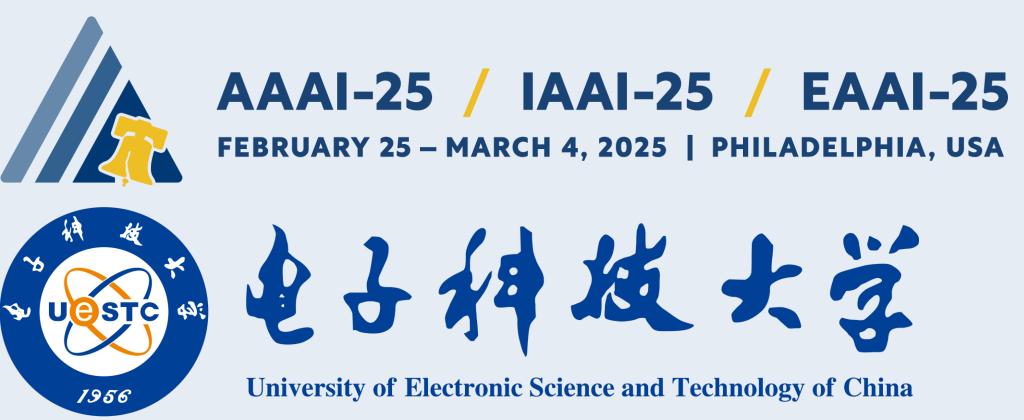
### Proposed Method: SKAPP



- (a) Meta Retriever: constructs query by integrating UGC content semantics with metadata information. (b) Selective Refiner: employs a new relative retrieval contribution to prediction (RRCP) measure, which is inspired by the conditional cross-mutual information, to select UGCs that have positive gains in prediction, filtering out irrelevant and noisy UGCs.
- (c) Prediction Network: leverages vision-language graph neural networks to aggregate contextual knowledge from selected UGCs with an RRCP-Attention-based module for accurate prediction.



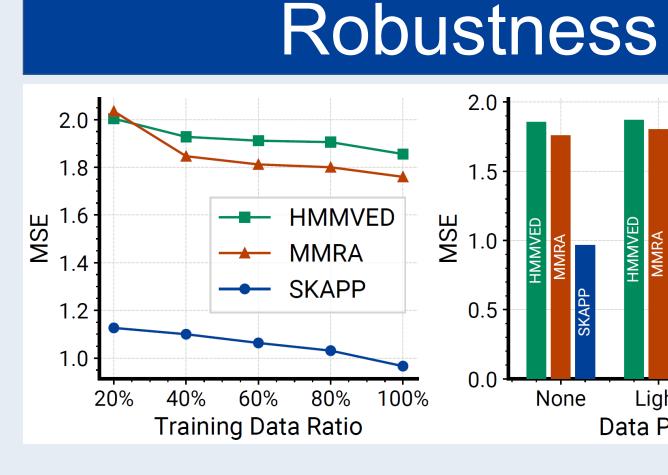
- I. We Need Diverse UGC Similarities: complex social UGCs cannot be compared solely by semantic similarities.
- II. Quality Over Quantity: Retrieving quality UGCs is more important than retrieving more (potentially noisy) UGCs.
- **III. Effective Aggregation**: After retrieving and selecting UGCs for augmentation, effectively aggregating UGCs furthers boosts performance.



## **Wey Findings**

# Ablation Study

| Variant                           | ICIP   | SMPD   |  |  |  |  |  |  |
|-----------------------------------|--------|--------|--|--|--|--|--|--|
| Ablation of SKAPP's Modules       |        |        |  |  |  |  |  |  |
| w/o Retrieval                     | 1.5614 | 4.0443 |  |  |  |  |  |  |
| w/o Meta Retriever                | 1.9006 | 4.1353 |  |  |  |  |  |  |
| w/o Selective Refiner             | 1.1004 | 2.0854 |  |  |  |  |  |  |
| w/o VL-GNN                        | 1.1223 | 2.1056 |  |  |  |  |  |  |
| w/o RRCP-Attention                | 1.0761 | 1.9606 |  |  |  |  |  |  |
| Ablation of UGC modalities        |        |        |  |  |  |  |  |  |
| w/o Visual                        | 1.1770 | 2.3567 |  |  |  |  |  |  |
| w/o Textual                       | 1.1829 | 2.7037 |  |  |  |  |  |  |
| w/o Metadata                      | 1.8188 | 4.0359 |  |  |  |  |  |  |
| Ablation of Retrieving Strategies |        |        |  |  |  |  |  |  |
| retrieval based on Photo          | 1.9006 | 4.1353 |  |  |  |  |  |  |
| retrieval based on Texts          | 1.9653 | 3.9958 |  |  |  |  |  |  |
| retrieval based on Metadata       | 1.6280 | 2.6945 |  |  |  |  |  |  |
| retrieval based on FLICO          | 1.8255 | 3.8562 |  |  |  |  |  |  |
| retrieval based on NIPA           | 1.9321 | 4.1687 |  |  |  |  |  |  |
| retrieval based on MMRA           | 1.9627 | 4.0507 |  |  |  |  |  |  |
| SKAPP (Full)                      | 0.9662 | 1.8196 |  |  |  |  |  |  |





- I. Define UGC Similarities: What types of UGC contexts is more useful for prediction? We may need further investigations & new definitions.
- II. New Ways to Select UGCs: Can we design a new lightweight but powerful selection algorithm?
- **III. Improve Efficiency**: Dynamically determine the # of retrieved UGCs for each target.
- **IV. End to End:** Running and improving the retrieval algorithm during model training.









